论文标题
发现黑盒优化的表示形式
Discovering Representations for Black-box Optimization
论文作者
论文摘要
黑盒优化中解决方案的编码是表达和域知识之间的微妙,手工制作的平衡 - 探索各种解决方案,并确保这些解决方案有用。我们的主要见解是,可以通过使用具有质量多样性算法的高性能解决方案的数据集(此处,MAP-ELITE)来自动化此过程,然后从该数据集中学习具有生成模型(此处,差异自动调制器)的表示形式。我们的第二个见解是,该表示形式可用于将质量多样性优化扩展到更高的维度 - 但前提是我们将其仔细地与学习的表示形式以及使用传统变体运营商生成的解决方案相混合。我们通过学习对一千个联合平面臂的逆运动学的低维编码来证明这些功能。结果表明,学到的表示形式使得与标准MAP-ELITE的评估顺序更少解决高维问题是可能的,并且一旦解决,就可以使用所产生的编码来快速优化新颖但类似的任务。提出的技术不仅将质量多样性算法扩展到高维度,还表明可以自动学习黑盒优化编码,而不是手工设计。
The encoding of solutions in black-box optimization is a delicate, handcrafted balance between expressiveness and domain knowledge -- between exploring a wide variety of solutions, and ensuring that those solutions are useful. Our main insight is that this process can be automated by generating a dataset of high-performing solutions with a quality diversity algorithm (here, MAP-Elites), then learning a representation with a generative model (here, a Variational Autoencoder) from that dataset. Our second insight is that this representation can be used to scale quality diversity optimization to higher dimensions -- but only if we carefully mix solutions generated with the learned representation and those generated with traditional variation operators. We demonstrate these capabilities by learning an low-dimensional encoding for the inverse kinematics of a thousand joint planar arm. The results show that learned representations make it possible to solve high-dimensional problems with orders of magnitude fewer evaluations than the standard MAP-Elites, and that, once solved, the produced encoding can be used for rapid optimization of novel, but similar, tasks. The presented techniques not only scale up quality diversity algorithms to high dimensions, but show that black-box optimization encodings can be automatically learned, rather than hand designed.