论文标题

FusionLane:使用深神经网络进行语言分割的多传感器融合

FusionLane: Multi-Sensor Fusion for Lane Marking Semantic Segmentation Using Deep Neural Networks

论文作者

Yin, Ruochen, Yu, Biao, Wu, Huapeng, Song, Yutao, Niu, Runxin

论文摘要

在构建泳道水平高精度图期间,实现有效的巷道标记语义分割是至关重要的一步。近年来,已经提出了许多图像语义分割方法。这些方法主要集中在相机上的图像上,由于传感器本身的限制,无法获得泳道标记的准确三维空间位置,因此无法满足对车道级别高精度构造的需求。本文提出了基于LiDAR和相机融合深神经网络的泳道标记语义分割方法。与其他方法不同,为了获得分割结果的准确位置信息,本文的语义分割对象是从激光点云转换而不是相机捕获的图像。该方法首先使用deeplabv3+ [\ ref {ref:1}]网络来分割相机捕获的图像,并且分割结果与激光雷达收集的点云合并为提出的网络的输入。在这个神经网络中,我们还添加了长期的短期内存(LSTM)结构,以使用时间序列信息来帮助网络进行泳道标记的语义分割。我们手动标记和扩展的14,000多个图像数据集的实验表明,该方法在点的语义分割云鸟视图的语义分割方面具有更好的性能。因此,可以显着改善高精度地图构建的自动化。我们的代码可在https://github.com/rolandying/fusionlane上找到。

It is a crucial step to achieve effective semantic segmentation of lane marking during the construction of the lane level high-precision map. In recent years, many image semantic segmentation methods have been proposed. These methods mainly focus on the image from camera, due to the limitation of the sensor itself, the accurate three-dimensional spatial position of the lane marking cannot be obtained, so the demand for the lane level high-precision map construction cannot be met. This paper proposes a lane marking semantic segmentation method based on LIDAR and camera fusion deep neural network. Different from other methods, in order to obtain accurate position information of the segmentation results, the semantic segmentation object of this paper is a bird's eye view converted from a LIDAR points cloud instead of an image captured by a camera. This method first uses the deeplabv3+ [\ref{ref:1}] network to segment the image captured by the camera, and the segmentation result is merged with the point clouds collected by the LIDAR as the input of the proposed network. In this neural network, we also add a long short-term memory (LSTM) structure to assist the network for semantic segmentation of lane markings by using the the time series information. The experiments on more than 14,000 image datasets which we have manually labeled and expanded have shown the proposed method has better performance on the semantic segmentation of the points cloud bird's eye view. Therefore, the automation of high-precision map construction can be significantly improved. Our code is available at https://github.com/rolandying/FusionLane.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源