论文标题
增强度量空间的老年规则阶层
Elder-Rule-Staircodes for Augmented Metric Spaces
论文作者
论文摘要
增强度量空间是配备函数$ f_x的度量空间$(x,d_x)$:x \ to \ mathbb {r} $。这种类型的数据通常是在实践中出现的,例如,$ \ mathbb {r}^d $中的点云$ x $,其中每个点$ x \ in x $中的每个点$ x \具有密度函数值$ f_x(x)$与之相关。增强度量空间$(x,d_x,f_x)$自然产生了2个参数过滤$ \ Mathcal {K} $。但是,所得的2-参数持续同源性$ \ mathrm {h} _ {\ bullet}(\ mathcal {k})$仍然可能是野生表示类型,并且可能不会具有简单的indecosobles。在本文中,由1参数过滤的零零同源性的老年规则激励,我们提出了一个类似条形码的摘要,称为“ Elder-rule-staircode”,作为一种编码$ \ mathrm {h} _0(\ Mathcal {k})$的编码方式。具体而言,如果$ n = | x | $,则旧规则阶层由$ n $数量的楼梯状块组成。我们表明,如果$ \ mathrm {h} _0(\ mathcal {k})$是间隔可分解的,则$ \ mathrm {h} _0的条形码(\ mathcal {k})$等于Elder-rule-staircode。此外,无论间隔可分解性如何,纤维条形码,尺寸函数(又称Hilbert函数)以及$ \ MathRM {H} _0(\ Mathcal {K})$的分级betti数量都可以有效地计算出Elder-Rule-Staircode。最后,我们开发并实施了一种有效的算法来计算$ o(n^2 \ log n)$时间的老式规则式码,如果$ x $来自固定的eucmentional eucmlidean space $ \ m mathbb {r}^d $,其中$ al}^d $,其中$α$α(n)$α(n)$α(n is Accress),则可以将其提高到$ o(n^2α(n))$。
An augmented metric space is a metric space $(X, d_X)$ equipped with a function $f_X: X \to \mathbb{R}$. This type of data arises commonly in practice, e.g, a point cloud $X$ in $\mathbb{R}^d$ where each point $x\in X$ has a density function value $f_X(x)$ associated to it. An augmented metric space $(X, d_X, f_X)$ naturally gives rise to a 2-parameter filtration $\mathcal{K}$. However, the resulting 2-parameter persistent homology $\mathrm{H}_{\bullet}(\mathcal{K})$ could still be of wild representation type, and may not have simple indecomposables. In this paper, motivated by the elder-rule for the zeroth homology of 1-parameter filtration, we propose a barcode-like summary, called the elder-rule-staircode, as a way to encode $\mathrm{H}_0(\mathcal{K})$. Specifically, if $n = |X|$, the elder-rule-staircode consists of $n$ number of staircase-like blocks in the plane. We show that if $\mathrm{H}_0(\mathcal{K})$ is interval decomposable, then the barcode of $\mathrm{H}_0(\mathcal{K})$ is equal to the elder-rule-staircode. Furthermore, regardless of the interval decomposability, the fibered barcode, the dimension function (a.k.a. the Hilbert function), and the graded Betti numbers of $\mathrm{H}_0(\mathcal{K})$ can all be efficiently computed once the elder-rule-staircode is given. Finally, we develop and implement an efficient algorithm to compute the elder-rule-staircode in $O(n^2\log n)$ time, which can be improved to $O(n^2α(n))$ if $X$ is from a fixed dimensional Euclidean space $\mathbb{R}^d$, where $α(n)$ is the inverse Ackermann function.