论文标题

GPCA:高斯过程嵌入通道注意的概率框架

GPCA: A Probabilistic Framework for Gaussian Process Embedded Channel Attention

论文作者

Xie, Jiyang, Chang, Dongliang, Ma, Zhanyu, Zhang, Guoqiang, Guo, Jun

论文摘要

通道注意机制通常已用于许多视觉任务中,以有效地提高性能。它能够加强信息渠道以及抑制无用的渠道。最近,已经提出并以各种方式实施了不同的渠道注意模块。一般而言,它们主要基于卷积和集合操作。在本文中,我们提出了嵌入式通道注意(GPCA)模块的高斯过程,并以概率方式进一步解释通道注意方案。 GPCA模块打算建模通道之间的相关性,该通道被认为是由beta分布式变量捕获的。由于无法通过数学可牵引的解决方案将Beta分布整合到卷积神经网络(CNN)的端到端训练中,因此我们利用Beta分布的近似来解决此问题。为了指定,我们适应了sigmoid-gaussian近似,其中高斯分布式变量被转移到间隔[0,1]中。然后,使用高斯过程来对不同通道之间的相关性进行建模。在这种情况下,得出了数学上可牵引的解决方案。 GPCA模块可以有效地实施并集成到CNN的端到端培训中。实验结果证明了所提出的GPCA模块的有希望的性能。代码可在https://github.com/pris-cv/gpca上找到。

Channel attention mechanisms have been commonly applied in many visual tasks for effective performance improvement. It is able to reinforce the informative channels as well as to suppress the useless channels. Recently, different channel attention modules have been proposed and implemented in various ways. Generally speaking, they are mainly based on convolution and pooling operations. In this paper, we propose Gaussian process embedded channel attention (GPCA) module and further interpret the channel attention schemes in a probabilistic way. The GPCA module intends to model the correlations among the channels, which are assumed to be captured by beta distributed variables. As the beta distribution cannot be integrated into the end-to-end training of convolutional neural networks (CNNs) with a mathematically tractable solution, we utilize an approximation of the beta distribution to solve this problem. To specify, we adapt a Sigmoid-Gaussian approximation, in which the Gaussian distributed variables are transferred into the interval [0,1]. The Gaussian process is then utilized to model the correlations among different channels. In this case, a mathematically tractable solution is derived. The GPCA module can be efficiently implemented and integrated into the end-to-end training of the CNNs. Experimental results demonstrate the promising performance of the proposed GPCA module. Codes are available at https://github.com/PRIS-CV/GPCA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源