论文标题

通过动态标签生成启用观点学习

Enabling Viewpoint Learning through Dynamic Label Generation

论文作者

Schelling, Michael, Hermosilla, Pedro, Vazquez, Pere-Pau, Ropinski, Timo

论文摘要

在许多计算机图形应用程序中,最佳观点预测是必不可少的任务。不幸的是,共同的观点质量具有两个主要缺点:对清洁表面网眼的依赖​​,这些质量并非总是可用的,并且缺乏封闭形式的表达式,这需要涉及渲染的昂贵搜索。为了克服这些局限性,我们建议将观点选择与通过端到端学习方法渲染分开,从而通过从非结构化点云而不是多边形网格中预测观点来降低网格质量的影响。尽管这使我们的方法对评估过程中的网格离散化不敏感,但只有在解决在这种情况下出现的标签歧义时才有可能。因此,我们还建议将标签生成纳入培训程序,从而使标签决策适应当前的网络预测。我们展示了我们提出的方法如何允许从不同对象类别和不同观点质量的模型学习观点预测。此外,我们表明,与最新的(SOTA)观点质量评估相比,预测时间从几分钟减少到一秒钟的一小部分。我们将进一步发布代码和培训数据,据我们所知,这将是可用的最大观点质量数据集。

Optimal viewpoint prediction is an essential task in many computer graphics applications. Unfortunately, common viewpoint qualities suffer from two major drawbacks: dependency on clean surface meshes, which are not always available, and the lack of closed-form expressions, which requires a costly search involving rendering. To overcome these limitations we propose to separate viewpoint selection from rendering through an end-to-end learning approach, whereby we reduce the influence of the mesh quality by predicting viewpoints from unstructured point clouds instead of polygonal meshes. While this makes our approach insensitive to the mesh discretization during evaluation, it only becomes possible when resolving label ambiguities that arise in this context. Therefore, we additionally propose to incorporate the label generation into the training procedure, making the label decision adaptive to the current network predictions. We show how our proposed approach allows for learning viewpoint predictions for models from different object categories and for different viewpoint qualities. Additionally, we show that prediction times are reduced from several minutes to a fraction of a second, as compared to state-of-the-art (SOTA) viewpoint quality evaluation. We will further release the code and training data, which will to our knowledge be the biggest viewpoint quality dataset available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源