论文标题

从表面波观测中进行测深的检测的变异数据同化方案的收敛分析

Convergence analysis of a variational data assimilation scheme for bathymetry detection from surface wave observations

论文作者

Kevlahan, N. K. -R., Khan, R. A.

论文摘要

海洋测深的准确映射是一个多方面的过程,需要在运输路线上安全有效导航并预测海啸波。当前可用的测深数据并不总是提供分辨率,以准确捕获此类非线性波的动力学。但是,收集准确的映射数据是困难,昂贵的,而且通常是危险的事情。作为替代方案,在这项研究中,我们使用表面波高度的一组有限的观测值集对一维浅水方程进行了变分数据同化方案,以改善对测深量法的估计值,以优化预测。我们展示了有关收敛系统参数的必要条件,并实施一个低通滤波器,以提高重建测深的定期。如果我们的目标是使用它来对海啸传播进行建模,我们会观察到,在测深的最佳重建中,相对较高的误差仍然可以对表面波的高度准确预测,这表明表面波对小节中的小规模效应的低灵敏度。这些结论基于高斯和沙洲剖面测深的数值实验,并且具有不同的观察操作员。这些结果将这些结果扩展到现实模型可能会产生重大影响,因为可以通过对准确的Tsunamii预测所需的足够的误差容忍度来最大程度地降低计算成本。

Accurate mapping of ocean bathymetry is a multi-faceted process, needed for safe and efficient navigation on shipping routes and for predicting tsunami waves. Currently available bathymetry data does not always provide the resolution to capture dynamics of such nonlinear waves accurately. However collection of accurate mapping data is difficult, costly, and often a dangerous affair. As an alternative, in this study we implement a variational data assimilation scheme on the one-dimensional shallow water equations to improve estimates of bathymetry, using a finite set of observations of surface wave height to optimise predictions. We show necessary conditions on system parameters for convergence, and implement a low-pass filter for increased regularity of our reconstructed bathymetry. If our objective is to use this to model tsunami propagation, we observe that a relatively higher error in the optimal reconstruction of the bathymetry still yields a highly accurate prediction of the surface wave, suggesting low sensitivity of surface waves to small scale effects in the bathymetry. These conclusions are based on numerical experiments for both Gaussian and sandbar profile bathymetry, and with different observation operators.These extension of these results to realistic models can potentially have a significant impact, as computational cost can be minimised through a priori knowledge of sufficient error tolerances needed for accurate tsunami prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源