论文标题

有限高度的矫正率的逻辑

The logic of orthomodular posets of finite height

论文作者

Chajda, Ivan, Länger, Helmut

论文摘要

定位poset形成量子力学逻辑的代数形式化。问题是如何在这种逻辑中引入结缔组织的含义。我们表明,当所讨论的矫形位置为有限的高度时,这是可能的。要点是,相应的代数,称为含义的矫正poset,即配备有含义的二进制操作员的poset,对应于原始的矫形器poset,并且该操作员无处不在。我们在这里介绍了含义的正数posets的公理列表。这使我们能够以有限高度的正数poset的代数逻辑来得出一个安静样式的公理化。

Orthomodular posets form an algebraic formalization of the logic of quantum mechanics. The question is how to introduce the connective implication in such a logic. We show that this is possible when the orthomodular poset in question is of finite height. The main point is that the corresponding algebra, called implication orthomodular poset, i.e. a poset equipped with a binary operator of implication, corresponds to the original orthomodular poset and this operator is everywhere defined. We present here the complete list of axioms for implication orthomodular posets. This enables us to derive an axiomatization in Gentzen style for the algebraizable logic of orthomodular posets of finite height.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源