论文标题
旋转曲线与螺旋星系盘的物质分布之间的关系
Relationship between rotation curves and matter distribution in spiral galaxy discs
论文作者
论文摘要
Feng&Gallo(2011)开发了一种数值方法,该方法是从密度分布,尤其是逆问题中得出旋转曲线的,同时仅考虑一个自我磨损的盘和薄盘近似。我们的第一个目的是复制相同的分析,并通过各种想法和示例扩展它。建立这种数值实现的主要障碍是某些奇异性。我们尝试使用不同的方法来修复不稳定性。此外,我们将问题及其方法添加到第三维的最后一章通过垂直于银河平面的第三维。 深色光环(通常由附近的球形分布表示其密度)应该支持螺旋星系旋转曲线的外部。但是,在这里,我们仅与自我磨光光盘一起工作。为了处理该主题,我们首先根据银河系的旋转曲线数据计算圆盘密度分布。然后,我们将此分布与观察到的指数恒星密度进行比较,并且差异归因于暗盘。带有深色光盘而不是深色光环的银河系的冯&Gallo的这种代表是有争议的。 当我们分析耀斑对旋转曲线的影响时,薄的圆盘近似失败,我们需要引入垂直尺寸,以测量和预测通过不同高度的耀斑的影响。仅通过将质量垂直于平面传播(而不增加任何进一步的质量),耀斑就不会激发旋转曲线的严重变化。耀斑主要引起银河系外部的速度降低($ r \ gtrsim 14 $ kpc)。但是,在耀斑的起点之后,我们也获得了第一千2杆的速度略有速度。
Feng & Gallo (2011) developed a numerical method of deriving rotation curves from the density distribution and, in particular, the inverse problem while considering just a self-gravitating disc and the thin disc approximation. Our first aim here is to reproduce the same analysis and expand it with various ideas and examples. The main obstacles to building this numerical implementation are certain singularities. We try to fix the instabilities using different methods. Moreover, we add a final chapter extending the problem and its method to a third dimension through the perpendicular to the galactic plane. The dark halo (whose density is usually represented by a nearby spherical distribution) is supposed to support the outer parts of the rotation curves of spiral galaxies. Here, however, we work only with a self-gravitation disc. To treat this topic we first calculate the disc density distribution from measured rotation curve data of the Milky Way. We then compare this distribution with the observed exponential stellar density, and the difference is attributed to a dark disc. This representation of Feng & Gallo of the Galaxy with a dark disc instead of a dark halo is controversial. When we analyse the effect of flares on rotation curves, the thin disc approximation fails, and we need to introduce a vertical dimension to measure and predict the effects of the flare through different heights. Just by spreading the mass perpendicularly to the plane -- without adding any further mass -- the flare provokes no severe changes on the rotation curve. The flare mainly provokes a faster velocity decrease in the outer part of the Galaxy ($r\gtrsim 14$ kpc). But we also have obtained a slight velocity increase in the first kiloparsecs after the starting point of the flare.