论文标题

riemann表面和地图$ p+1 $ $ p $是PRIME

Groups of automorphisms of Riemann surfaces and maps of genus $p+1$ where $p$ is prime

论文作者

Izquierdo, Milagros, Jones, Gareth A., Reyes-Carocca, Sebastián

论文摘要

我们将$ g $属的紧凑型riemann表面分类,其中$ g-1 $是Prime $ p $,对于某些整数$ρ\ ge 1 $,它具有订单$ρ(g-1)$的一组自动形态,并确定相应的Jacobian品种的同学分解。这扩展了Belolipetzky的结果和第二位作者的成绩,价格为$ρ> 6 $,并以$ρ= 3、4、5 $和$ 6 $的第一和第三作者的成绩。作为推论,我们将$ p+1 $属的有价值的常规超图(包括地图)与不可定向的特征性$ -P $的常规超图一起,以及由Prime $ p $划分的自动形态订单组;这扩展了Conder,\ vSirá\ V n和Tucker的结果。

We classify compact Riemann surfaces of genus $g$, where $g-1$ is a prime $p$, which have a group of automorphisms of order $ρ(g-1)$ for some integer $ρ\ge 1$, and determine isogeny decompositions of the corresponding Jacobian varieties. This extends results of Belolipetzky and the second author for $ρ>6$, and of the first and third authors for $ρ=3, 4, 5$ and $6$. As a corollary we classify the orientably regular hypermaps (including maps) of genus $p+1$, together with the non-orientable regular hypermaps of characteristic $-p$, with automorphism group of order divisible by the prime $p$; this extends results of Conder, \v Sirá\v n and Tucker for maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源