论文标题

数据驱动的在线学习电力系统动态

Data Driven Online Learning of Power System Dynamics

论文作者

Sinha, Subhrajit, Nandanoori, Sai Pushpak, Yeung, Enoch

论文摘要

随着电力网络中传感和通信的进步,来自电力网络的高频实时数据可以用作发展更好的监视功能的资源。在这项工作中,提出了一种基于数据驱动的操作员理论方法的系统方法,该方法涉及Koopman操作员,以在线识别电力系统动力学。特别是,提供了一种新的算法,该算法与任何以前现有的算法不同,它在获取新的数据点时会更新Koopman操作员。所提出的算法具有三个优点:a)允许对电源系统动力学进行实时监控b)线性电源系统动力学(该线性系统通常位于更高的尺寸特征空间中,并且与流行的Extended Dynamic Demance dynamic Decomptsions相比,与基础非线性非线性动力学的线性不相同,C)计算快速且较低的强度(相比)ALGOR(EDMD)。使用来自非线性模型的合成数据和IEEE 39总线系统,使用线性化模型中的合成数据在IEEE 9总线系统上说明了所提出的算法的效率。

With the advancement of sensing and communication in power networks, high-frequency real-time data from a power network can be used as a resource to develop better monitoring capabilities. In this work, a systematic approach based on data-driven operator theoretic methods involving Koopman operator is proposed for the online identification of power system dynamics. In particular, a new algorithm is provided, which unlike any previously existing algorithms, updates the Koopman operator iteratively as new data points are acquired. The proposed algorithm has three advantages: a) allows for real-time monitoring of the power system dynamics b) linear power system dynamics (this linear system is usually in a higher dimensional feature space and is not same as linearization of the underlying nonlinear dynamics) and c) computationally fast and less intensive when compared to the popular Extended Dynamic Mode Decomposition (EDMD) algorithm. The efficiency of the proposed algorithm is illustrated on an IEEE 9 bus system using synthetic data from the nonlinear model and on IEEE 39 bus system using synthetic data from the linearized model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源