论文标题
通道交互网络,用于细粒度的图像分类
Channel Interaction Networks for Fine-Grained Image Categorization
论文作者
论文摘要
由于不同的渠道对应于不同的语义,因此利用富裕关系可以帮助捕获这种差异,因此,通过细微的阶层差异,细粒度的图像分类非常具有挑战性。我们认为利用丰富的关系可以帮助捕获这种差异。在本文中,我们提出了一个通道相互作用网络(CIN),该网络在图像和跨图像中对频道的相互作用进行建模。对于单个图像,提出了一个自通道相互作用(SCI)模块来探索图像中的通道相关性。这使模型可以从相关的通道中学习互补功能,从而产生更强的细粒度。此外,给定图像对,我们引入了一个对比通道相互作用(CCI)模块,以使用公制学习框架对跨样本通道相互作用进行建模,从而使CIN可以区分图像之间的细微视觉差异。我们的模型可以以端到端的方式进行有效培训,而无需进行多阶段培训和测试。最后,对三个公开可用的基准进行了全面的实验,该方法始终超过了诸如DFL-CNN(Wang,Morariu和Davis 2018)和NTS(Yang等人,2018年)的表现。
Fine-grained image categorization is challenging due to the subtle inter-class differences.We posit that exploiting the rich relationships between channels can help capture such differences since different channels correspond to different semantics. In this paper, we propose a channel interaction network (CIN), which models the channel-wise interplay both within an image and across images. For a single image, a self-channel interaction (SCI) module is proposed to explore channel-wise correlation within the image. This allows the model to learn the complementary features from the correlated channels, yielding stronger fine-grained features. Furthermore, given an image pair, we introduce a contrastive channel interaction (CCI) module to model the cross-sample channel interaction with a metric learning framework, allowing the CIN to distinguish the subtle visual differences between images. Our model can be trained efficiently in an end-to-end fashion without the need of multi-stage training and testing. Finally, comprehensive experiments are conducted on three publicly available benchmarks, where the proposed method consistently outperforms the state-of-theart approaches, such as DFL-CNN (Wang, Morariu, and Davis 2018) and NTS (Yang et al. 2018).