论文标题

慢慢旋转星的罗斯比模式:静止旋转的扭曲多层的深度依赖性

Rossby modes in slowly rotating stars: depth dependence in distorted polytropes with uniform rotation

论文作者

Damiani, C., Cameron, R. H., Birch, A. C., Gizon, L.

论文摘要

最近,从水平表面和近表面太阳流的测量值中发现了大规模的罗斯比波(Löptien,2018年)。我们有兴趣理解为什么在观测值中仅看到部门模式,以及对观察到的模式的径向结构进行建模。为此,我们在这里表征了R模式的径向本征函数,用于在均匀旋转中缓慢旋转多层。我们发现,对于在非呈现表面密度的球体上,对于自由度的边界条件,R模式只能在Inviscid情况下以$ \ ell = m $球形谐波存在,并且我们计算其深度依赖性和领先顺序的频率。对于准绝热分层,没有径向节点的部门模式是唯一几乎是环形的模式,并且相应的水平运动量表的深度依赖性为$ r^m $。对于除零径向阶部门以外的所有R模式,非绝热分层在径向力平衡中起着至关重要的作用。当分层接近中性时,缺乏准螺旋溶液,除了半径没有节点的部门模式,这是从该系统需要处于水平和径向力平衡的陈述中。在没有超绝热或亚绝热分层和粘度的情况下,水平和径向力平衡都独立地决定了压力扰动。压力扰动的两个确定是一致的唯一准螺旋案例是特殊情况下,$ \ ell = m $,以及带有$ r^m $的水平位移量表。

Large-scale Rossby waves have recently been discovered from measurements of horizontal surface and near-surface solar flows (Löptien at al. 2018). We are interested in understanding why only the sectoral modes are seen in the observations and also in modelling the radial structure of the observed modes. To do so, we characterise here the radial eigenfunctions of r modes for slowly-rotating polytropes in uniform rotation. We find that for free-surface boundary conditions on a spheroid of non-vanishing surface density, r modes can only exist for $\ell=m$ spherical harmonics in the inviscid case, and we compute their depth dependence and frequencies to leading order. For quasi-adiabatic stratification the sectoral modes with no radial nodes are the only modes which are almost toroidal and the depth dependence of the corresponding horizontal motion scales as $r^m$. For all r modes except the zero radial order sectoral ones, non-adiabatic stratification plays a crucial role in the radial force balance. The lack of quasi-toroidal solutions when stratification is close to neutral, except for the sectoral modes without nodes in radius, follows from the statement that the system needs to be in both horizontal and radial force balance. In the absence of super- or subadiabatic stratification and viscosity, both the horizontal and radial force balances independently determine the pressure perturbation. The only quasi-toroidal cases in which the two determinations of the pressure perturbation are consistent are the special cases where $\ell=m$, and the horizontal displacement scales with $r^m$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源