论文标题
功能模式的细元地图集,用于fMRI分析
Fine-grain atlases of functional modes for fMRI analysis
论文作者
论文摘要
人口成像明显增加了功能成像数据集的大小,从而为个体间差异的神经基础提供了新的启示。分析这些大数据需要新的可扩展性挑战,计算和统计。因此,通常在几个信号中汇总了大脑图像,例如使用脑图或功能模式降低体素水平措施。相应的大脑网络的一个很好的选择很重要,因为大多数数据分析从这些降低的信号开始。我们贡献了功能模式的精细分辨地图,包括64至1024个网络。这些功能模式(Divumo)的词典经过数百万个fMRI功能性脑体积为2.4TB的功能性脑体积,在27个研究和许多研究小组中跨越了。我们证明了在我们的细元图石酶上提取减少信号的好处,用于许多经典的功能数据分析管道:刺激从12,334个大脑响应中解码,跨疗程和个体对fMRI的标准GLM分析,提取休息状态功能 - 功能连接体生物标记物生物标记物的2,500个个体,数据压缩和Meta-anda Spoce Accy Accy Accyssportition copperssspitiation。在每个分析方案中,我们将功能地图集的性能与其他流行参考的性能以及简单的体素级分析进行了比较。结果强调了使用高维“软”功能图书馆,在捕获其功能梯度的同时表示和分析大脑活动的重要性。对高维模式的分析具有与体素水平相似的统计性能,但计算成本却大大降低和更高的解释性。除了使它们可用外,我们还根据其解剖位置为这些模式提供有意义的名称。这将有助于报告结果。
Population imaging markedly increased the size of functional-imaging datasets, shedding new light on the neural basis of inter-individual differences. Analyzing these large data entails new scalability challenges, computational and statistical. For this reason, brain images are typically summarized in a few signals, for instance reducing voxel-level measures with brain atlases or functional modes. A good choice of the corresponding brain networks is important, as most data analyses start from these reduced signals. We contribute finely-resolved atlases of functional modes, comprising from 64 to 1024 networks. These dictionaries of functional modes (DiFuMo) are trained on millions of fMRI functional brain volumes of total size 2.4TB, spanned over 27 studies and many research groups. We demonstrate the benefits of extracting reduced signals on our fine-grain atlases for many classic functional data analysis pipelines: stimuli decoding from 12,334 brain responses, standard GLM analysis of fMRI across sessions and individuals, extraction of resting-state functional-connectomes biomarkers for 2,500 individuals, data compression and meta-analysis over more than 15,000 statistical maps. In each of these analysis scenarii, we compare the performance of our functional atlases with that of other popular references, and to a simple voxel-level analysis. Results highlight the importance of using high-dimensional "soft" functional atlases, to represent and analyse brain activity while capturing its functional gradients. Analyses on high-dimensional modes achieve similar statistical performance as at the voxel level, but with much reduced computational cost and higher interpretability. In addition to making them available, we provide meaningful names for these modes, based on their anatomical location. It will facilitate reporting of results.