论文标题
Aliovolent碱 - 地铁溶质对陶瓷晶界的影响:密度功能理论研究
Impact of Aliovalent Alkaline-Earth Metal Solutes on Ceria Grain Boundaries: A Density Functional Theory Study
论文作者
论文摘要
事实证明,当以多晶形式使用并具有高浓度的Aliovalent掺杂阳离子时,陶瓷是一种出色的离子传输和离子交换材料。尽管应用了广泛的应用,但原子级缺陷在该材料中的影响几乎没有研究且了解不足。在本文中,使用第一原理模拟,我们提供了对未依存的晶粒构造(GBS)(GBS)和碱性金属(AEM)掺杂GB的原子结构,热力学稳定性和电子特性的基本理解。使用密度官能理论模拟,具有GGA+U功能,我们发现$σ$ 3(111)/[$ \ bar {1} $ 01] GB比$σ$ 3(121)/[$ \ bar {1} $ 01 $ 01] GB更稳定。 (111)/[$ \ bar {1} $ 01] GB平面。我们以$ \ sim $ 20%[m] $ _ {gb} $(m = be,mg,ca,ca,sr和ba)加入GB,并发现GB Energies对溶质的大小,界面菌株的大小,界面菌株和GB的包装密度具有抛物线能的依赖。我们看到GB在CA,SR和BA掺杂上的稳定性,而MG则使它们在热力学上不稳定。态的电子密度表明,在AEM掺杂二氧化碳的带隙内没有缺陷状态,这极度有利于在该离子导体中维持低电子迁移率。与热力学稳定性不同,电子特性在宿主和溶质的结构和化学方面表现出复杂的相互依赖性。这项工作使原子级的理解是对Aliovalent阳离子掺杂的Ceria GBS的理解,这些凝胶ceria gbs是未来研究的锚点,可以专注于理解和改善离子传播。
Ceria has proven to be an excellent ion-transport and ion-exchange material when used in polycrystalline form and with a high-concentration of aliovalent doped cations. Despite its widespread application, the impact of atomic-scale defects in this material are scarcely studied and poorly understood. In this article, using first-principles simulations, we provide a fundamental understanding of the atomic-structure, thermodynamic stability and electronic properties of undoped grain-boundaries (GBs) and alkaline-earth metal (AEM) doped GBs in ceria. Using density-functional theory simulations, with a GGA+U functional, we find the $Σ$3 (111)/[$\bar{1}$01] GB is thermodynamically more stable than the $Σ$3 (121)/[$\bar{1}$01] GB due to the larger atomic coherency in the $Σ$3 (111)/[$\bar{1}$01] GB plane. We dope the GBs with $\sim$20% [M]$_{GB}$ (M=Be, Mg, Ca, Sr, and Ba) and find that the GB energies have a parabolic dependence on the size of solutes, the interfacial strain and the packing density of the GB. We see a stabilization of the GBs upon Ca, Sr and Ba doping whereas Be and Mg render them thermodynamically unstable. The electronic density of states reveal that no defect states are present in or above the band gap of the AEM doped ceria, which is highly conducive to maintain low electronic mobility in this ionic conductor. The electronic properties, unlike the thermodynamic stability, exhibit complex inter-dependence on the structure and chemistry of the host and the solutes. This work makes advances in the atomic-scale understanding of aliovalent cation doped ceria GBs serving as an anchor to future studies that can focus on understanding and improving ionic-transport.