论文标题

用于任意非交易运算符的准分发

Quasi-distributions for arbitrary non-commuting operators

论文作者

Ben-Benjamin, J. S., Cohen, L.

论文摘要

我们提出了一种新的方法,用于获得两个任意运算符的量子准验证分布,$ p(α,β)$,$ \ mathbf {a} $和$ \ mathbf {b} $,其中$α$和$α$和$β$是c-variobles。我们表明,任意运算符的量子期望值始终可以表示为$α$和$β$的相位空间积分,其中集成是两个术语的产物:一个仅取决于量子状态,而另一个仅取决于操作员。在这种表述中,准概率和对应性规则的概念自然而然地与准分布的推导同时出现,因此获得了任意运算符的通讯规则的概念的概括。

We present a new approach for obtaining quantum quasi-probability distributions, $P(α,β)$, for two arbitrary operators, $\mathbf{a}$ and $\mathbf{b}$, where $α$ and $β$ are the corresponding c-variables. We show that the quantum expectation value of an arbitrary operator can always be expressed as a phase space integral over $α$ and $β$, where the integrand is a product of two terms: One dependent only on the quantum state, and the other only on the operator. In this formulation, the concepts of quasi-probability and correspondence rule arise naturally in that simultaneously with the derivation of the quasi-distribution, one obtains the generalization of the concept of correspondence rule for arbitrary operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源