论文标题
通过周期性微观结构得出一维弹性材料的植物动力学影响功能
Deriving peridynamic influence functions for one-dimensional elastic materials with periodic microstructure
论文作者
论文摘要
植物动力学材料模型中的影响功能对弹性波的动态行为具有很大影响,进而可以极大地影响断裂传播和材料故障的动态模拟。通常,在不考虑物理考虑的情况下,选择了用于其数值属性的影响函数。在这项工作中,我们提出了一种在具有周期性微结构的材料中的一维初始/边界价值问题中得出perid肌动力影响函数的方法。从微观尺度上的线性局部弹性动力学方程开始,我们首先使用多项式尖绿叶来近似微观结构位移,然后得出宏观位移的均质的非本地运动运动方程。很容易将其重新构成具有离散影响函数的线性peridyamic方程。离散影响函数的形状和定位由微结构机械性能和长度尺度完全确定。通过与高度分辨的微结构有限元模型和具有线性衰减影响函数的标准线性植入动力模型进行比较,我们证明了从微结构考虑到的影响函数在预测依赖时间的位移和波动动力学方面更为准确。
The influence function in peridynamic material models has a large effect on the dynamic behavior of elastic waves and in turn can greatly effect dynamic simulations of fracture propagation and material failure. Typically, the influence functions that are used in peridynamic models are selected for their numerical properties without regard to physical considerations. In this work, we present a method of deriving the peridynamic influence function for a one-dimensional initial/boundary value problem in a material with periodic microstructure. Starting with the linear local elastodynamic equation of motion in the microscale, we first use polynomial anzatzes to approximate microstructural displacements and then derive the homogenized nonlocal dynamic equation of motion for the macroscopic displacements; which, is easily reformulated as linear peridyamic equation with a discrete influence function. The shape and localization of the discrete influence function is completely determined by microstructural mechanical properties and length scales. By comparison with a highly resolved microstructural finite element model and the standard linear peridynamic model with a linearly decaying influence function, we demonstrate that the influence function derived from microstructural considerations is more accurate in predicting time dependent displacements and wave dynamics.