论文标题

视频框架插值

Softmax Splatting for Video Frame Interpolation

论文作者

Niklaus, Simon, Liu, Feng

论文摘要

向后翘曲形式的可区分图像采样已在深度估计和光流预测等任务中广泛采用。相比之下,如何执行向前的翘曲的关注较少,部分原因是其他挑战(例如,以可区分的方式解决了将多个像素映射到同一目标位置的冲突。我们提出了软马克斯的脱落以解决这种范式变化,并显示了其在框架插值应用中的有效性。具体而言,给定两个输入帧,我们基于使用SoftMax剥落的光流估算,将框架及其特征金字塔表示。在此过程中,SoftMax碎片无缝处理多个源像素映射到同一目标位置的情况。然后,我们使用综合网络来预测扭曲表示的插值结果。我们的软磁体脱落使我们不仅可以在任意时间插值框架,还可以微调特征金字塔和光流。我们表明,我们的合成方法在软磁体裂口的授权下实现了视频框架插值的新最新结果。

Differentiable image sampling in the form of backward warping has seen broad adoption in tasks like depth estimation and optical flow prediction. In contrast, how to perform forward warping has seen less attention, partly due to additional challenges such as resolving the conflict of mapping multiple pixels to the same target location in a differentiable way. We propose softmax splatting to address this paradigm shift and show its effectiveness on the application of frame interpolation. Specifically, given two input frames, we forward-warp the frames and their feature pyramid representations based on an optical flow estimate using softmax splatting. In doing so, the softmax splatting seamlessly handles cases where multiple source pixels map to the same target location. We then use a synthesis network to predict the interpolation result from the warped representations. Our softmax splatting allows us to not only interpolate frames at an arbitrary time but also to fine tune the feature pyramid and the optical flow. We show that our synthesis approach, empowered by softmax splatting, achieves new state-of-the-art results for video frame interpolation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源