论文标题

单线裂变和串联太阳能电池降低热降解并增强寿命

Singlet fission and tandem solar cells reduce thermal degradation and enhance lifespan

论文作者

Jiang, Y., Nielsen, M. P., Baldacchino, A. J., Green, M. A., McCamey, D. R., Tayebjee, M. J. Y., Schmidt, T. W., Ekins-Daukes, N. J.

论文摘要

光伏装置的经济价值取决于其寿命和功率转换效率。向后者迈进的进展包括绕过冲击Queisser极限的机制,例如串联设计和多个激子产生(MEG)。在这里,我们解释了硅串联和MEG如何增强的硅细胞结构如何导致细胞工作温度较低,与标准的C-SI细胞相比,设备寿命增加了。还证明了MEG增强硅细胞的进一步优势:(i)设备体系结构可以完全规避对电流匹配的需求; (ii)降解后,四烯是一种候选单线裂变(MEG)材料,对太阳光谱透明。 (i)和(ii)的组合意味着,即使单线裂变层降解,主要的硅设备也将继续以合理的效率运行。从模块的角度将单线裂变增强的硅细胞的寿命优势与备受推重的钙钛矿/硅串联和常规的C-SI模块进行了有利的比较。

The economic value of a photovoltaic installation depends upon both its lifetime and power conversion efficiency. Progress towards the latter includes mechanisms to circumvent the Shockley- Queisser limit, such as tandem designs and multiple exciton generation (MEG). Here we explain how both silicon tandem and MEG enhanced silicon cell architectures result in lower cell operating temperatures, increasing the device lifetime compared to standard c-Si cells. Also demonstrated are further advantages from MEG enhanced silicon cells: (i) the device architecture can completely circumvent the need for current-matching; and (ii) upon degradation, tetracene, a candidate singlet fission (a form of MEG) material, is transparent to the solar spectrum. The combination of (i) and (ii) mean that the primary silicon device will continue to operate with reasonable efficiency even if the singlet fission layer degrades. The lifespan advantages of singlet fission enhanced silicon cells, from a module perspective, are compared favorably alongside the highly regarded perovskite/silicon tandem and conventional c-Si modules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源