论文标题

开源基于计算机视觉的图层3D打印分析

Open Source Computer Vision-based Layer-wise 3D Printing Analysis

论文作者

Petsiuk, Aliaksei L., Pearce, Joshua M.

论文摘要

本文介绍了一种开源的基于计算机视觉的硬件结构和软件算法,该算法在3-D打印过程中分析图层,跟踪打印错误,并生成适当的打印机操作以提高可靠性。这种方法建立在多阶段的单眼图像检查基础上,该图像允许监视印刷对象的外部形状和层的内部结构。从侧视高度验证开始,开发的程序使用多板匹配和迭代最接近的点算法分析了外壳轮廓对应的虚拟顶部视图,以及内层质量质量质量质量聚类,与高斯滤光度滤镜与高斯混合模型和分割结构上的结构性异构体与凝聚力构造的凝聚力组合构成。这允许评估打印模式的全局和本地参数。每层实验验证的分析时间少于一分钟,可以将其视为用于大型印刷品的准真实时间。这些系统可以用作旨在节省时间和材料的智能打印悬架工具。但是,结果表明该算法提供了一种将原位打印数据系统化的方法,作为用于增材制造的完全开源故障校正算法的第一步。

The paper describes an open source computer vision-based hardware structure and software algorithm, which analyzes layer-wise the 3-D printing processes, tracks printing errors, and generates appropriate printer actions to improve reliability. This approach is built upon multiple-stage monocular image examination, which allows monitoring both the external shape of the printed object and internal structure of its layers. Starting with the side-view height validation, the developed program analyzes the virtual top view for outer shell contour correspondence using the multi-template matching and iterative closest point algorithms, as well as inner layer texture quality clustering the spatial-frequency filter responses with Gaussian mixture models and segmenting structural anomalies with the agglomerative hierarchical clustering algorithm. This allows evaluation of both global and local parameters of the printing modes. The experimentally-verified analysis time per layer is less than one minute, which can be considered a quasi-real-time process for large prints. The systems can work as an intelligent printing suspension tool designed to save time and material. However, the results show the algorithm provides a means to systematize in situ printing data as a first step in a fully open source failure correction algorithm for additive manufacturing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源