论文标题
总计的结构,其后果和Clifford的完整性
The Structure of Sum-Over-Paths, its Consequences, and Completeness for Clifford
论文作者
论文摘要
我们表明,用于象征性地表示线性地图或量子操作员的形式主义(SOP)以及适当的重写系统,具有匕首 - 连接pop的结构。这一观察结果产生了几种后果:1)SOP的形态非常接近称为Zh-Calculus的图形微积分的图,因此我们给出了两者之间的解释系统。 2)一种称为丢弃结构的结构可以应用于富集形式主义,以特别是可以代表量子测量。我们还丰富了重写系统,以便获得最初形式主义及其丰富版本的Clifford片段的完整性。
We show that the formalism of "Sum-Over-Path" (SOP), used for symbolically representing linear maps or quantum operators, together with a proper rewrite system, has a structure of dagger-compact PROP. Several consequences arise from this observation: 1) Morphisms of SOP are very close to the diagrams of the graphical calculus called ZH-Calculus, so we give a system of interpretation between the two; 2) A construction, called the discard construction, can be applied to enrich the formalism so that, in particular, it can represent the quantum measurement. We also enrich the rewrite system so as to get the completeness of the Clifford fragments of both the initial formalism and its enriched version.