论文标题

通过机器学习对二氧化碳发射强度的短期预测

Short-Term Forecasting of CO2 Emission Intensity in Power Grids by Machine Learning

论文作者

Leerbeck, Kenneth, Bacher, Peder, Junker, Rune, Goranović, Goran, Corradi, Olivier, Ebrahimy, Razgar, Tveit, Anna, Madsen, Henrik

论文摘要

开发了一种机器学习算法,以预测丹麦竞标区DK2中电力电网中的二氧化碳发射强度,从而区分了平均和边际排放。该分析是对由大量(473)组成的数据集进行的分析,例如从选定的相邻区域收集的功率,需求,进口,天气状况等。使用LASSO(惩罚线性回归分析)和正面特征选择算法将数字降低到小于50。创建了三个捕获数据的不同方面的线性回归模型(非线性和变量等的耦合),并使用SoftMax加权平均值组合成最终模型。进行交叉验证,以实现以纠正残差的方式进行脱缩和自回归移动平均模型(ARIMA),从而使最终模型具有外源输入(ARIMAX)的变体。对相应不确定性的预测在六个小时以下和以上进行了两个时间范围。边缘排放量与DK2区域的任何条件无关,这表明边际发电机位于相邻区域。 开发的方法可以应用于欧洲电力网络中的任何投标区,而无需详细了解该区域。

A machine learning algorithm is developed to forecast the CO2 emission intensities in electrical power grids in the Danish bidding zone DK2, distinguishing between average and marginal emissions. The analysis was done on data set comprised of a large number (473) of explanatory variables such as power production, demand, import, weather conditions etc. collected from selected neighboring zones. The number was reduced to less than 50 using both LASSO (a penalized linear regression analysis) and a forward feature selection algorithm. Three linear regression models that capture different aspects of the data (non-linearities and coupling of variables etc.) were created and combined into a final model using Softmax weighted average. Cross-validation is performed for debiasing and autoregressive moving average model (ARIMA) implemented to correct the residuals, making the final model the variant with exogenous inputs (ARIMAX). The forecasts with the corresponding uncertainties are given for two time horizons, below and above six hours. Marginal emissions came up independent of any conditions in the DK2 zone, suggesting that the marginal generators are located in the neighbouring zones. The developed methodology can be applied to any bidding zone in the European electricity network without requiring detailed knowledge about the zone.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源