论文标题

在知识图上加强负面抽样以供推荐

Reinforced Negative Sampling over Knowledge Graph for Recommendation

论文作者

Wang, Xiang, Xu, Yaokun, He, Xiangnan, Cao, Yixin, Wang, Meng, Chua, Tat-Seng

论文摘要

正确处理丢失的数据是推荐的基本挑战。当前的大多数作品都从未观察到的数据中进行负抽样,以提供带有负信号的推荐模型的培训。然而,现有的负面抽样策略(无论是静态的还是自适应的采样策略)不足以产生高质量的负面样本 - 既可以为模型培训提供信息,又反映了用户实际需求。在这项工作中,我们假设该项目知识图(KG)(KG)在项目和KG实体之间提供丰富的关系可能对推断信息性和事实负面样本很有用。为此,我们开发了一种新的负面抽样模型,即知识图策略网络(KGPOLICY),该模型是探索高质量负面因素的强化学习代理。具体而言,通过进行我们设计的勘探操作,它可以从目标正相互作用中导航,自适应地收到知识吸引的负信号,并最终产生潜在的负面项目来训练推荐人。我们对配备KGPOLICY的矩阵分解(MF)模型进行了测试,并且它比DNS和IRGAN(例如DNS和IRGAN)以及KG增强的推荐模型(如KGAT)都取得了重大改进。从不同角度进行进一步的分析提供了知识感知抽样的见解。我们在https://github.com/xiangwang1223/kgpolicy上发布代码和数据集。

Properly handling missing data is a fundamental challenge in recommendation. Most present works perform negative sampling from unobserved data to supply the training of recommender models with negative signals. Nevertheless, existing negative sampling strategies, either static or adaptive ones, are insufficient to yield high-quality negative samples --- both informative to model training and reflective of user real needs. In this work, we hypothesize that item knowledge graph (KG), which provides rich relations among items and KG entities, could be useful to infer informative and factual negative samples. Towards this end, we develop a new negative sampling model, Knowledge Graph Policy Network (KGPolicy), which works as a reinforcement learning agent to explore high-quality negatives. Specifically, by conducting our designed exploration operations, it navigates from the target positive interaction, adaptively receives knowledge-aware negative signals, and ultimately yields a potential negative item to train the recommender. We tested on a matrix factorization (MF) model equipped with KGPolicy, and it achieves significant improvements over both state-of-the-art sampling methods like DNS and IRGAN, and KG-enhanced recommender models like KGAT. Further analyses from different angles provide insights of knowledge-aware sampling. We release the codes and datasets at https://github.com/xiangwang1223/kgpolicy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源