论文标题
汉密尔顿 - 雅各比式公式,用于最佳的多种车辆系统的最佳协调
A Hamilton-Jacobi Formulation for Optimal Coordination of Heterogeneous Multiple Vehicle Systems
论文作者
论文摘要
当多个端点配置同样需要时,我们提出了一种最佳多个车辆团队的最佳协调方法,例如在自主组装中所看到的。单个车辆在编队中的位置未分配先验,关键挑战是找到最佳配置分配以及最佳控制和轨迹。通常,分配和轨迹计划问题分别解决。我们引入了一个新的多车协调范式,其中从单个汉密尔顿 - 雅各布(HJ)局部微分方程(PDE)的粘度解决方案(PDE)同时找到了最佳目标分配和最佳车辆轨迹,该方程为全球最佳提供了必要和足够的条件。这种方法的固有是,单个车辆动态模型不必相同,因此可以应用于异质系统。求解HJ方程的数值方法在历史上一直依赖于解决方案空间的离散网格,并具有系统尺寸的指数缩放,从而阻止了它们对多个车辆系统的适用性。通过利用HOPF公式的概括,我们避免使用网格,并提出一种在车辆数量中表现出多项式缩放的方法。
We present a method for optimal coordination of multiple vehicle teams when multiple endpoint configurations are equally desirable, such as seen in the autonomous assembly of formation flight. The individual vehicles' positions in the formation are not assigned a priori and a key challenge is to find the optimal configuration assignment along with the optimal control and trajectory. Commonly, assignment and trajectory planning problems are solved separately. We introduce a new multi-vehicle coordination paradigm, where the optimal goal assignment and optimal vehicle trajectories are found simultaneously from a viscosity solution of a single Hamilton-Jacobi (HJ) partial differential equation (PDE), which provides a necessary and sufficient condition for global optimality. Intrinsic in this approach is that individual vehicle dynamic models need not be the same, and therefore can be applied to heterogeneous systems. Numerical methods to solve the HJ equation have historically relied on a discrete grid of the solution space and exhibits exponential scaling with system dimension, preventing their applicability to multiple vehicle systems. By utilizing a generalization of the Hopf formula, we avoid the use of grids and present a method that exhibits polynomial scaling in the number of vehicles.