论文标题

一维量子液滴的集体激发

Collective Excitations of a One-Dimensional Quantum Droplet

论文作者

Tylutki, Marek, Astrakharchik, Grigori E., Malomed, Boris A., Petrov, Dmitry S.

论文摘要

我们计算了由彼得比特斯基方程(GPE)用立方体和二次非线性描述的两种组分的波体混合物中一维自限量子液滴的激发光谱。立方术语源自混合物的平均场能与有效耦合常数$ΔG$成比例的均能,而二次非线性则对应于超越均值的均值贡献。液滴属性由控制参数$γ\ proptoΔgn^{2/3} $控制,其中$ n $是粒子号。对于大$γ> 0 $,液滴具有扁平形状,其光谱的离散部分由平面波型bogoliubov声子组成,这些声子通过平坦密度的散装传播,并由液滴的边缘反射。随着$γ$的减少,这些模式跨入连续体,在特定的临界值下依次越过粒子发射阈值。一个值得注意的例外是呼吸模式,我们发现它总是绑定的。余额点$γ= 0 $提供了由GPE管理的系统的实现,具有异常的二次非线性。这种情况的特征在于呼吸模式频率与粒子发射阈值等于0.8904的比率。由于$γ$倾向于$ - \ infty $,该比率趋向于1,而液滴转换为可集成的立方GPE的孤子解决方案。

We calculate the excitation spectrum of a one-dimensional self-bound quantum droplet in a two-component bosonic mixture described by the Gross-Pitaevskii equation (GPE) with cubic and quadratic nonlinearities. The cubic term originates from the mean-field energy of the mixture proportional to the effective coupling constant $δg$, whereas the quadratic nonlinearity corresponds to the attractive beyond-mean-field contribution. The droplet properties are governed by a control parameter $γ\propto δg N^{2/3}$, where $N$ is the particle number. For large $γ>0$ the droplet features the flat-top shape with the discrete part of its spectrum consisting of plane-wave Bogoliubov phonons propagating through the flat-density bulk and reflected by edges of the droplet. With decreasing $γ$ these modes cross into the continuum, sequentially crossing the particle-emission threshold at specific critical values. A notable exception is the breathing mode which we find to be always bound. The balance point $γ= 0$ provides implementation of a system governed by the GPE with an unusual quadratic nonlinearity. This case is characterized by the ratio of the breathing-mode frequency to the particle-emission threshold equal to 0.8904. As $γ$ tends to $-\infty$ this ratio tends to 1 and the droplet transforms into the soliton solution of the integrable cubic GPE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源