论文标题
honeycomb分层氧化物K $ _2 $ ni $ _2 $ _2 $ teo $ _6 $的磁和离子扩散
Magnetism and Ion Diffusion in Honeycomb Layered Oxide K$_2$Ni$_2$TeO$_6$: First Time Study by Muon Spin Rotation & Neutron Scattering
论文作者
论文摘要
为了寻找新颖有效的电池,对基于K的蜂窝层氧化物材料引起了极大的兴趣,既是其基本特性和潜在应用。基于此类化合物实现有效电池的关键问题是了解K-ION扩散机制。然而,由于锂和钠等其他碱离子,由于其固有的核磁矩固有弱核磁矩,因此对使用磁旋转特性对材料的钾离子(K $^+$)动力学进行了调查一直具有挑战性。具有高旋转磁化比的自旋偏振剂使MUON自旋旋转和松弛($ $ $+SR)技术非常适合探测弱磁旋后力矩材料中离子动力学。在这里,我们报告了使用$ $ $ $ $+ SR测量值的K $ _2 $ _2 $ _2 $ _2 $ _6 $的蜂窝分层氧化物材料中的磁性和K+动力学。我们的低温$ $ $ $+SR结果与互补的磁化易感性一起,在26 K处找到抗铁磁过渡。此外,在较高温度下进行的$μ$+SR研究表明,钾离子(K $^+$)在250 K以上移动250 k,而扩散过程的激活能量为EA = 121(13)MEV。这是第一次使用$ $ $+ SR测量基于钾的电池材料中的K+动力学。最后,我们的结果还表明,K-Ion自扩散主要发生在粉末颗粒的表面上。这为使用纳米结构改善离子扩散和设备性能的未来可能性打开了可能性。
In the quest of finding novel and efficient batteries, a great interest has raised in K-based honeycomb layer oxide materials both for their fundamental properties and potential applications. A key issue in the realization of efficient batteries based on such compounds, is to understand the K-ion diffusion mechanism. However, investigation of potassium-ion (K$^+$) dynamics in materials using magneto-spin properties has so far been challenging, due to its inherently weak nuclear magnetic moment, in contrast to other alkali ions such as lithium and sodium. Spin-polarised muons, having a high gyromagnetic ratio, make the muon spin rotation and relaxation ($μ$+SR) technique ideal for probing ions dynamics in weak magneto-spin moment materials. Here we report the magnetic properties and K+ dynamics in honeycomb layered oxide material of the K$_2$Ni$_2$TeO$_6$ using $μ$+SR measurements. Our low-temperature $μ$+SR results together with, with complementary magnetic susceptibility, find an antiferromagnetic transition at 26 K. Further $μ$+SR studies performed at higher temperatures reveal that potassium ions (K$^+$) become mobile above 250 K and the activation energy for the diffusion process is Ea = 121(13) meV. This is the first time that K+ dynamics in potassium-based battery materials has been measured using $μ$+SR. Finally our results also indicate an interesting possibility that K-ion self diffusion occurs predominantly at the surface of the powder particles. This opens future possibilities for improving ion diffusion and device performance using nano-structuring.