论文标题

各向异性背景中的全息纠缠熵与限制相位过渡

Holographic Entanglement Entropy in Anisotropic Background with Confinement-Deconfinement Phase Transition

论文作者

Aref'eva, Irina Ya., Patrushev, Alexander, Slepov, Pavel

论文摘要

我们讨论了一个通用的五维完全各向异性全息模型,该模型具有三种不同的空间尺度因子,其特征是小型黑洞和大型黑洞之间的类似范德华的样相变。该模型的特征是背景各向异性与碰撞重离子几何形状的各向异性之间的关系。我们计算了平板形区域的全息纠缠熵(HEE),其方向相对于梁线和冲击参数的特征是欧拉角的特征。我们研究HEE及其密度对热力学(温度,化学电位)和几何(各向异性参数,厚度和纠缠区域的方向)参数的依赖性。作为一种特殊情况,考虑了具有两个相等的横向缩放因子的模型。该模型得到Dilaton和两个Maxwell场的支持。在这种情况下,我们详细讨论HEE及其密度:该模型的有趣特征是纠缠熵的跳跃及其在小/大黑洞相变的线附近的密度。这些跳跃取决于各向异性参数,化学势和方向。我们还讨论了该模型中C-功能的不同定义和行为。在爱因斯坦框架中计算出的C功能减小,同时在各向同性情况下为所有$ \ ell $增加$ \ ell $(在$(μ,t)$ - 平面的区域,远离相变的线路)。我们发现几种各向异性配置的C-功能的非单调性,但是它们与任何现有的C理论都不矛盾,因为它们都基于Lorentz的不变性。

We discuss a general five-dimensional completely anisotropic holographic model with three different spatial scale factors, characterized by a Van der Waals-like phase transition between small and large black holes. A peculiar feature of the model is the relation between anisotropy of the background and anisotropy of the colliding heavy ions geometry. We calculate the holographic entanglement entropy (HEE) of the slab-shaped region, the orientation of which relatively to the beams line and the impact parameter is characterized by the Euler angles. We study the dependences of the HEE and its density on the thermodynamic (temperature, chemical potential) and geometric (parameters of anisotropy, thickness, and orientation of entangled regions) parameters. As a particular case the model with two equal transversal scaling factors is considered. This model is supported by the dilaton and two Maxwell fields. In this case we discuss the HEE and its density in detail: interesting features of this model are jumps of the entanglement entropy and its density near the line of the small/large black hole phase transition. These jumps depend on the anisotropy parameter, chemical potential, and orientation. We also discuss different definitions and behavior of c-functions in this model. The c-function calculated in the Einstein frame decreases while increasing $\ell$ for all $\ell$ in the isotropic case (in regions of $(μ,T)$-plane far away from the line of the phase transition). We find the non-monotonicity of the c-functions for several anisotropic configurations, which however does not contradict with any of the existing c-theorems since they all base on Lorentz invariance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源