论文标题
SASL:神经网络加速的显着自适应稀疏学习
SASL: Saliency-Adaptive Sparsity Learning for Neural Network Acceleration
论文作者
论文摘要
加速CNN的推理速度对于它们在实际应用程序中的部署至关重要。在所有修剪方法中,那些实施稀疏学习框架的人在学习和以端到端数据驱动的方式修剪模型时已证明是有效的。但是,这些作品会在所有过滤器上施加相同的稀疏性正则化,这几乎不会导致最佳结构 - 帕斯斯网络。在本文中,我们提出了一种显着自适应的稀疏学习(SASL)方法,以进一步优化。设计了每个过滤器的新颖有效估计,即显着性,这是从两个方面衡量的:对预测性能和消耗的计算资源的重要性。在稀疏性学习过程中,根据显着性调整正则化强度,因此我们优化的格式可以更好地保留预测性能,同时零零计算过滤器。显着性的计算将最小开销引入了训练过程,这意味着我们的SASL非常有效。在修剪阶段,为了优化所提出的数据依赖性标准,使用了硬采矿策略,显示出更高的有效性和效率。广泛的实验证明了我们方法的出色性能。值得注意的是,在ILSVRC-2012数据集上,我们的方法可以减少49.7%的Resnet-50拖失l,而0.39%的TOP-1和0.05%的TOP-5准确性降解。
Accelerating the inference speed of CNNs is critical to their deployment in real-world applications. Among all the pruning approaches, those implementing a sparsity learning framework have shown to be effective as they learn and prune the models in an end-to-end data-driven manner. However, these works impose the same sparsity regularization on all filters indiscriminately, which can hardly result in an optimal structure-sparse network. In this paper, we propose a Saliency-Adaptive Sparsity Learning (SASL) approach for further optimization. A novel and effective estimation of each filter, i.e., saliency, is designed, which is measured from two aspects: the importance for the prediction performance and the consumed computational resources. During sparsity learning, the regularization strength is adjusted according to the saliency, so our optimized format can better preserve the prediction performance while zeroing out more computation-heavy filters. The calculation for saliency introduces minimum overhead to the training process, which means our SASL is very efficient. During the pruning phase, in order to optimize the proposed data-dependent criterion, a hard sample mining strategy is utilized, which shows higher effectiveness and efficiency. Extensive experiments demonstrate the superior performance of our method. Notably, on ILSVRC-2012 dataset, our approach can reduce 49.7% FLOPs of ResNet-50 with very negligible 0.39% top-1 and 0.05% top-5 accuracy degradation.