论文标题
在空间混合效应模型下估计大量领域的基础功能
Estimating Basis Functions in Massive Fields under the Spatial Mixed Effects Model
论文作者
论文摘要
在高斯随机场(GRF)的假设下,通常通过获得参数的最大似然估计,然后使用Kriging方程来达到预测值,从而实现空间预测。对于大量数据集,已提出使用预期最大化(EM)算法进行估算的固定等级Kriging作为常规但计算中刺激性的Kriging方法的替代方法。该方法通过将空间过程重新定义为基础函数和空间随机效应的线性组合来降低估计的计算成本。这种方法的缺点是它对观察到的位置和结之间的关系施加了约束。我们开发了一种利用空间混合效应(SME)模型的替代方法,但通过通过交替的期望条件最大化(AECM)算法估算观测值和结之间的空间依赖性范围,从而实现了额外的灵活性。实验表明,我们的方法论可以提高估计,而无需牺牲预测准确性,同时还可以最大程度地减少额外参数估计的额外计算负担。该方法应用于美国国家气候数据中心存档的温度数据集,比以前的方法改进了结果。
Spatial prediction is commonly achieved under the assumption of a Gaussian random field (GRF) by obtaining maximum likelihood estimates of parameters, and then using the kriging equations to arrive at predicted values. For massive datasets, fixed rank kriging using the Expectation-Maximization (EM) algorithm for estimation has been proposed as an alternative to the usual but computationally prohibitive kriging method. The method reduces computation cost of estimation by redefining the spatial process as a linear combination of basis functions and spatial random effects. A disadvantage of this method is that it imposes constraints on the relationship between the observed locations and the knots. We develop an alternative method that utilizes the Spatial Mixed Effects (SME) model, but allows for additional flexibility by estimating the range of the spatial dependence between the observations and the knots via an Alternating Expectation Conditional Maximization (AECM) algorithm. Experiments show that our methodology improves estimation without sacrificing prediction accuracy while also minimizing the additional computational burden of extra parameter estimation. The methodology is applied to a temperature data set archived by the United States National Climate Data Center, with improved results over previous methodology.