论文标题
更新型尖峰神经元种群的低维触发率动力学
Low-dimensional firing-rate dynamics for populations of renewal-type spiking neurons
论文作者
论文摘要
可以使用低维射击率或神经质量模型来数学分析大量神经元的宏观动力学。但是,这些模型无法捕获随机尖峰神经元的尖峰同步作用,例如非平稳种群对快速变化的刺激的反应。在这里,我们为一般更新型神经元的均匀种群提供了低维射击率模型,包括由白噪声驱动的集成和火力模型。更新模型解释了神经元的耐受性和尖峰同步动力学。该推导基于相关的耐火密度方程的本本特征扩展,该方程将Fokker-Planck方程的先前光谱方法推广到任意续订模型。我们找到了特征值之间的简单关系,该关系确定了点火速率动力学的特征时间尺度,以及尖刺间隔密度的拉普拉斯变换或更新过程的存活函数。对于包括泄漏的集成和火力模型在内的许多更新模型,很容易获得拉普拉斯变换的分析表达式。仅保留第一个本本也已经产生的点火率动力学已经产生足够的低维近似,从而捕获刺激发作处的尖峰同步效应和快速的瞬态动力学。我们明确证明了我们模型对具有绝对耐磨性的大量均匀载体神经元的有效性,以及其他续签模型,这些模型接受了对特征值的明确分析计算。此处呈现的本本征的扩展为基于尖峰神经元动力学具有难治性的计算神经科学中的新型点火率模型提供了系统的框架。
The macroscopic dynamics of large populations of neurons can be mathematically analyzed using low-dimensional firing-rate or neural-mass models. However, these models fail to capture spike synchronization effects of stochastic spiking neurons such as the non-stationary population response to rapidly changing stimuli. Here, we derive low-dimensional firing-rate models for homogeneous populations of general renewal-type neurons, including integrate-and-fire models driven by white noise. Renewal models account for neuronal refractoriness and spike synchronization dynamics. The derivation is based on an eigenmode expansion of the associated refractory density equation, which generalizes previous spectral methods for Fokker-Planck equations to arbitrary renewal models. We find a simple relation between the eigenvalues, which determine the characteristic time scales of the firing rate dynamics, and the Laplace transform of the interspike interval density or the survival function of the renewal process. Analytical expressions for the Laplace transforms are readily available for many renewal models including the leaky integrate-and-fire model. Retaining only the first eigenmode yields already an adequate low-dimensional approximation of the firing-rate dynamics that captures spike synchronization effects and fast transient dynamics at stimulus onset. We explicitly demonstrate the validity of our model for a large homogeneous population of Poisson neurons with absolute refractoriness, and other renewal models that admit an explicit analytical calculation of the eigenvalues. The here presented eigenmode expansion provides a systematic framework for novel firing-rate models in computational neuroscience based on spiking neuron dynamics with refractoriness.