论文标题

关于学习STL任务的鲁棒性指标

On Robustness Metrics for Learning STL Tasks

论文作者

Varnai, Peter, Dimarogonas, Dimos V.

论文摘要

信号时间逻辑(STL)是描述动态系统复杂行为的强大工具。在许多方法中,STL任务约束下系统的控制问题非常适合基于学习的解决方案,因为STL配备了稳健性指标,这些指标可以量化对任务规格的满意度并因此可以作为有用的奖励。在这项工作中,我们从他们如何帮助这种学习算法的角度研究了现有和潜在的鲁棒性指标。我们表明,各种理想的属性限制了潜在指标的形式,并根据结果引入新的属性。通过有见地的案例研究证明了这种新的鲁棒性指标在加速学习程序方面的有效性。

Signal temporal logic (STL) is a powerful tool for describing complex behaviors for dynamical systems. Among many approaches, the control problem for systems under STL task constraints is well suited for learning-based solutions, because STL is equipped with robustness metrics that quantify the satisfaction of task specifications and thus serve as useful rewards. In this work, we examine existing and potential robustness metrics specifically from the perspective of how they can aid such learning algorithms. We show that various desirable properties restrict the form of potential metrics, and introduce a new one based on the results. The effectiveness of this new robustness metric for accelerating the learning procedure is demonstrated through an insightful case study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源