论文标题
$ l _ {\ infty} $ - 爱因斯坦 - 卡丹 - 帕蒂尼重力的代数
$L_{\infty}$-Algebras of Einstein-Cartan-Palatini Gravity
论文作者
论文摘要
我们详细说明了循环$ l_ \ infty $ - 代数的总体相对性和宇宙学常数在爱因斯坦 - 卡丹 - 帕蒂尼形式上的宇宙学常数,这在任意维度和签名的空间上,包括所有对称性,野外方程式和不含物质的磁性标识。我们提出了一个本地配方以及一个全球协变量的框架,在可行的空位时,这两个$ l_ \ ind oftty $ - 代数之间的同构。通过二元性,我们表明我们的$ l_ \ infty $ - 代数描述了爱因斯坦 - 卡丹 - 帕拉蒂尼重力的完整BV-BRST配方。我们对如何将拓扑规理论中的壳冗余对称性扩展到对称对称性的对称对称性的一般描述,以$ L_ \ infty $ -Algebras的准同态性为对称性。我们使用它来将重力与Chern-Simons理论之间的壳上的等效扩展到三个维度上,从而将差异分级的代数之间的显式$ l_ \ infty $ -quasi-iSomorthism形态形态形成,该代数适用于外壳和变性动力学指标。相比之下,我们表明,$ l_ \ l_ \ infty $ - 代数的重力与差异分级的谎言代数在四个维度上是$ bf $理论的差异。
We give a detailed account of the cyclic $L_\infty$-algebra formulation of general relativity with cosmological constant in the Einstein-Cartan-Palatini formalism on spacetimes of arbitrary dimension and signature, which encompasses all symmetries, field equations and Noether identities of gravity without matter fields. We present a local formulation as well as a global covariant framework, and an explicit isomorphism between the two $L_\infty$-algebras in the case of parallelizable spacetimes. By duality, we show that our $L_\infty$-algebras describe the complete BV-BRST formulation of Einstein-Cartan-Palatini gravity. We give a general description of how to extend on-shell redundant symmetries in topological gauge theories to off-shell correspondences between symmetries in terms of quasi-isomorphisms of $L_\infty$-algebras. We use this to extend the on-shell equivalence between gravity and Chern-Simons theory in three dimensions to an explicit $L_\infty$-quasi-isomorphism between differential graded Lie algebras which applies off-shell and for degenerate dynamical metrics. In contrast, we show that there is no morphism between the $L_\infty$-algebra underlying gravity and the differential graded Lie algebra governing $BF$ theory in four dimensions.