论文标题
通过在线学习识别交流网络
Identification of AC Networks via Online Learning
论文作者
论文摘要
电力网络中间歇性分布资源的渗透不断提高,要求采用新颖的计划和控制方法,这些方法与网格的详细知识有关。但是,有关系统拓扑和参数的可靠信息可能会因时间变化的电力分配网络而缺失或过时。本文提出了一个在线学习程序,以估算网络接收矩阵捕获拓扑信息和线路参数。首先,我们提供了一种递归识别算法,以利用反相位和电流的相量测量。以加速收敛的目的,我们随后使用实验设计的过程对基本算法进行补充,该过程通过计算最佳电压激发来最大化每个步骤的数据信息内容。我们对现有技术的方法有所改善,其有效性得到了对现实测试床的数值研究的证实。
The increasing penetration of intermittent distributed energy resources in power networks calls for novel planning and control methodologies which hinge on detailed knowledge of the grid. However, reliable information concerning the system topology and parameters may be missing or outdated for temporally varying electric distribution networks. This paper proposes an online learning procedure to estimate the network admittance matrix capturing topological information and line parameters. We start off by providing a recursive identification algorithm exploiting phasor measurements of voltages and currents. With the goal of accelerating convergence, we subsequently complement our base algorithm with a design-of-experiment procedure which maximizes the information content of data at each step by computing optimal voltage excitations. Our approach improves on existing techniques, and its effectiveness is substantiated by numerical studies on realistic testbeds.