论文标题

碳酸液体的限制介导的相行为:蒙特卡洛模拟的见解

Confinement-mediated phase behavior of hydrocarbon fluids: Insights from Monte Carlo simulations

论文作者

Li, Jiaoyan, Rao, Qi, Xia, Yidong, Hoepfner, Michael P., Deo, Milind

论文摘要

据报道,限制在多孔培养基中的碳氢化合物液的相行为与在大量环境中的存在显着偏离,这是由于存在亚10nm孔。尽管实验和模拟测量了限制在天然和合成纳米孔中的碳氢化合物的气泡/露点和吸附等温线,但根据表面润湿性和化学的液体孔相互作用的强度,限制效应的效果较少。更重要的是,禁令引起的现象的基本物理仍然存在混淆。在这项工作中,我们研究了N-己烷的相行为和毛细血管凝结,以了解分子水平上的限制的影响。为了系统地研究孔的影响,我们构建了两种类型的墙限制。一个是由斯蒂尔电位描述的无结构虚拟壁,另一个是一个全原子的无定形二氧化硅结构,表面由羟基修饰。我们的数值结果表明,流体孔相互作用,孔径和孔形态的效应在介导碳氢化合物的压力 - 体温(PVT)特性中的重要性。这项工作的最引人注目的发现是,从图形摘要中说明,相对于散装相位,可以提高或抑制从范德华型吸附等温环预测的饱和压力。随着表面能(即流体孔相互作用)的减少,等温蒸气压的增加,表明更偏爱蒸气态存在的流体。足够的液体相互作用的足够减少甚至可以将蒸气压在散装流体的上方。

The phase behavior of hydrocarbon fluids confined in porous media has been reported to deviate significantly from that in the bulk environment due to the existence of sub-10nm pores. Though experiments and simulations have measured the bubble/dew points and sorption isotherms of hydrocarbons confined in both natural and synthetic nanopores, the confinement effects in terms of the strength of fluid-pore interactions tuned by surface wettability and chemistry have received comparably less discussion. More importantly, the underlying physics of confinement-induced phenomena remain obfuscated. In this work, we studied the phase behavior and capillary condensation of n-hexane to understand the effects of confinement at the molecular level. To systematically investigate the pore effects, we constructed two types of wall confinements; one is a structureless virtual wall described by the Steele potential and the other one is an all-atom amorphous silica structure with surface modified by hydroxyl groups. Our numerical results demonstrated the importance of fluid-pore interaction, pore size, and pore morphology effects in mediating the pressure-volume-temperature (PVT) properties of hydrocarbons. The most remarkable finding of this work was that the saturation pressure predicted from the van der Waals-type adsorption isothermal loop could be elevated or suppressed relative to the bulk phase, as illustrated in the graphical abstract. As the surface energy (i.e., fluid-pore interaction) decreased, the isothermal vapor pressure increased, indicating a greater preference for the fluid to exist in the vapor state. Sufficient reduction of the fluid-pore interactions could even elevate the vapor pressure above that of the bulk fluid.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源