论文标题

平衡竞争目标与嘈杂的数据:基于分数的分类器,用于福利感知机器学习

Balancing Competing Objectives with Noisy Data: Score-Based Classifiers for Welfare-Aware Machine Learning

论文作者

Rolf, Esther, Simchowitz, Max, Dean, Sarah, Liu, Lydia T., Björkegren, Daniel, Hardt, Moritz, Blumenstock, Joshua

论文摘要

尽管现实世界的决策涉及许多相互竞争的目标,但算法决策通常会通过单个目标函数进行评估。在本文中,我们研究了算法政策,这些算法政策在私人目标(例如利润)和公共目标(例如社会福利)之间明确贸易。我们分析了一类自然的政策,这些政策基于学习的分数追踪经验的帕累托前沿,并专注于如何在嘈杂或数据限制的制度中做出这些决策。我们的理论结果表征了这一班级的最佳策略,由于分数不准确而束缚了帕累托错误,并在最佳策略与丰富的公平限制的利润最大化政策之间表现出等效性。然后,我们在两种不同的情况下提出了经验结果 - 在线内容建议和可持续的鲍鱼渔业 - 强调了我们在各种实际决策中的适用性。综上所述,这些结果阐明了使用机器学习来影响社会福利的决策时固有的权衡。

While real-world decisions involve many competing objectives, algorithmic decisions are often evaluated with a single objective function. In this paper, we study algorithmic policies which explicitly trade off between a private objective (such as profit) and a public objective (such as social welfare). We analyze a natural class of policies which trace an empirical Pareto frontier based on learned scores, and focus on how such decisions can be made in noisy or data-limited regimes. Our theoretical results characterize the optimal strategies in this class, bound the Pareto errors due to inaccuracies in the scores, and show an equivalence between optimal strategies and a rich class of fairness-constrained profit-maximizing policies. We then present empirical results in two different contexts -- online content recommendation and sustainable abalone fisheries -- to underscore the applicability of our approach to a wide range of practical decisions. Taken together, these results shed light on inherent trade-offs in using machine learning for decisions that impact social welfare.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源