论文标题
有限的追求逃避游戏
Bounded-Rational Pursuit-Evasion Games
论文作者
论文摘要
我们提出了一个框架,该框架将有限理性的想法纳入动态随机追求逃避游戏中。一般而言,随机游戏的解决方案通过反馈形式的(NASH)平衡来表征。但是,计算这些NASH均衡策略可能需要广泛的计算资源。在本文中,代理人被建模为有限的计算资源的有限理性实体。我们通过将其应用于随机风场的两辆车之间的追捕游戏中来说明该框架,在那里,追捕者和逃避者都是有限的。我们通过将其作为有限国家马尔可夫决策过程(MDPS)的迭代序列正确施放,可以通过将其正确施放为迭代序列来分析这种游戏。利用认知层次结构理论的工具和算法(“级别 - $ k $思维”),我们计算随后的离散游戏的解决方案,同时考虑到每个代理的合理性水平。我们还提供了一种在线算法,供每个代理推断其对手理性水平。
We present a framework that incorporates the idea of bounded rationality into dynamic stochastic pursuit-evasion games. The solution of a stochastic game is characterized, in general, by its (Nash) equilibria in feedback form. However, computing these Nash equilibrium strategies may require extensive computational resources. In this paper, the agents are modeled as bounded rational entities having limited computational resources. We illustrate the framework by applying it to a pursuit-evasion game between two vehicles in a stochastic wind field, where both the pursuer and the evader are bounded rational. We show how such a game may be analyzed by properly casting it as an iterative sequence of finite-state Markov Decision Processes (MDPs). Leveraging tools and algorithms from cognitive hierarchy theory ("level-$k$ thinking") we compute the solution of the ensuing discrete game, while taking into consideration the rationality level of each agent. We also present an online algorithm for each agent to infer its opponent rationality level.