论文标题
在表征渐近安全基础的量子几何形状时
On characterizing the Quantum Geometry underlying Asymptotic Safety
论文作者
论文摘要
渐近安全计划基于Reuter固定点的高能完成,这是重力重新归一化组流动的非平凡固定点。在这个固定点,耦合常数的规范质量差异通过量子波动引起的异常维度平衡,因此该理论在紫外线中具有量子标度不变性。量子波动所起的关键作用表明,与固定点相关的几何形状表现出非字母类似的特性。在这项工作中,我们继续根据有效的平均作用采用复合操作员形式主义来表征这种几何形状。明确地,我们在背景$ d $ -sphere上的几何操作员的异常维度与编码固定点附近线性化的重新归一化组流量的稳定矩阵之间的关系。详细分析了稳定性矩阵的特征值光谱,我们确定了一个“扰动制度”,其中光谱特性受规范能力计数的控制。我们的结果恢复了量子重力波动的功能,将(经典的边缘)$ r^2 $ - 操作员变成了相关的功能。此外,我们发现有很大的迹象表明,两点功能中存在的高阶曲率项在保证路透社固定点的预测能力方面起着至关重要的作用。
The asymptotic safety program builds on a high-energy completion of gravity based on the Reuter fixed point, a non-trivial fixed point of the gravitational renormalization group flow. At this fixed point the canonical mass-dimension of coupling constants is balanced by anomalous dimensions induced by quantum fluctuations such that the theory enjoys quantum scale invariance in the ultraviolet. The crucial role played by the quantum fluctuations suggests that the geometry associated with the fixed point exhibits non-manifold like properties. In this work, we continue the characterization of this geometry employing the composite operator formalism based on the effective average action. Explicitly, we give a relation between the anomalous dimensions of geometric operators on a background $d$-sphere and the stability matrix encoding the linearized renormalization group flow in the vicinity of the fixed point. The eigenvalue spectrum of the stability matrix is analyzed in detail and we identify a "perturbative regime" where the spectral properties are governed by canonical power counting. Our results recover the feature that quantum gravity fluctuations turn the (classically marginal) $R^2$-operator into a relevant one. Moreover, we find strong indications that higher-order curvature terms present in the two-point function play a crucial role in guaranteeing the predictive power of the Reuter fixed point.