论文标题
广义上部哈密顿的上限图
An upper bound of a generalized upper Hamiltonian number of a graph
论文作者
论文摘要
在本文中,我们研究了订购顶点的图形,我们定义了一个称为伪订购的概括,对于图$ h $,我们定义了图形$ g $的$ h $ -h $ -amiltonian数字。我们将证明这个概念是对哈密顿数字和可追溯数的概括。我们将使用$ h $ hamiltonian $ g $的图形$ g $和$ h $的同构的等效特征。此外,我们将证明,对于固定数量的顶点,每个路径都有最大的上部$ h $ -H $ -HAMILTONIAN数字,这是对上汉密尔顿数字和上部可追溯数的相同主张的概括。最后,我们将证明,对于每个连接的图形$ h $,只有最大$ h $ -HAMILTONIAN号码。
In this article we study graphs with ordering of vertices, we define a generalization called a pseudoordering, and for a graph $H$ we define the $H$-Hamiltonian number of a graph $G$. We will show that this concept is a generalization of both the Hamiltonian number and the traceable number. We will prove equivalent characteristics of an isomorphism of graphs $G$ and $H$ using $H$-Hamiltonian number of $G$. Furthermore, we will show that for a fixed number of vertices, each path has a maximal upper $H$-Hamiltonian number, which is a generalization of the same claim for upper Hamiltonian numbers and upper traceable numbers. Finally we will show that for every connected graph $H$ only paths have maximal $H$-Hamiltonian number.