论文标题

$ d^{0} \ to k^{ - }π^{+}η$衰减的$ d^{0} \ dalitz分析

Dalitz analysis of $D^{0}\to K^{-}π^{+}η$ decays at Belle

论文作者

Belle Collaboration, Chen, Y. Q., Li, L. K., Yan, W. B., Adachi, I., Aihara, H., Said, S. Al, Asner, D. M., Atmacan, H., Aulchenko, V., Aushev, T., Ayad, R., Babu, V., Badhrees, I., Bahinipati, S., Behera, P., Bennett, J., Bhardwaj, V., Bilka, T., Biswal, J., Bozek, A., Bračko, M., Browder, T. E., Campajola, M., Cao, L., Červenkov, D., Chang, M. -C., Chekelian, V., Chen, A., Cheon, B. G., Chilikin, K., Cho, H. E., Cho, K., Choi, S. -K., Choi, Y., Choudhury, S., Cinabro, D., Cunliffe, S., Dash, N., De Nardo, G., Di Capua, F., Doležal, Z., Dong, T. V., Eidelman, S., Epifanov, D., Fast, J. E., Ferber, T., Ferlewicz, D., Fulsom, B. G., Garg, R., Gaur, V., Gabyshev, N., Garmash, A., Giri, A., Goldenzweig, P., Golob, B., Hartbrich, O., Hayasaka, K., Hayashii, H., Hou, W. -S., Hsu, C. -L., Inami, K., Inguglia, G., Ishikawa, A., Itoh, R., Iwasaki, M., Iwasaki, Y., Jacobs, W. W., Jang, E. -J., Jeon, H. B., Jia, S., Jin, Y., Joo, K. K., Kang, K. H., Karyan, G., Kawasaki, T., Kim, D. Y., Kim, S. H., Kimmel, T. D., Kinoshita, K., Kodyš, P., Korpar, S., Križan, P., Kroeger, R., Krokovny, P., Kuhr, T., Kulasiri, R., Kumar, R., Kuzmin, A., Kwon, Y. -J., Lalwani, K., Lange, J. S., Lee, I. S., Lee, S. C., Li, Y. B., Gioi, L. Li, Libby, J., Lieret, K., Liventsev, D., MacNaughton, J., MacQueen, C., Masuda, M., Matvienko, D., Merola, M., Miyabayashi, K., Mizuk, R., Mohanty, S., Mussa, R., Nakao, M., Natkaniec, Z., Nayak, M., Nishida, S., Ogawa, S., Ono, H., Oskin, P., Pakhlov, P., Pakhlova, G., Pardi, S., Park, H., Patra, S., Paul, S., Pedlar, T. K., Pestotnik, R., Piilonen, L. E., Podobnik, T., Popov, V., Prencipe, E., Prim, M. T., Rabusov, A., Ritter, M., Röhrken, M., Rout, N., Russo, G., Sahoo, D., Sanuki, T., Savinov, V., Schneider, O., Schnell, G., Schueler, J., Schwanda, C., Schwartz, A. J., Seino, Y., Senyo, K., Sevior, M. E., Shapkin, M., Shebalin, V., Shiu, J. -G., Sokolov, A., Solovieva, E., Starič, M., Stottler, Z. S., Sumihama, M., Sumiyoshi, T., Sutcliffe, W., Takizawa, M., Tanida, K., Tenchini, F., Trabelsi, K., Uchida, M., Uglov, T., Uno, S., Urquijo, P., Varner, G., Vorobyev, V., Wang, C. H., Wang, E., Wang, M. -Z., Wang, P., Watanabe, M., Won, E., Xu, X., Yang, S. B., Ye, H., Yin, J. H., Yuan, C. Z., Yusa, Y., Zhang, Z. P., Zhilich, V., Zhukova, V., Zhulanov, V.

论文摘要

我们介绍了衰减$ d^{0} \的第一个dalitz图分析的结果,向k^{ - }π^{+}η$。该分析是对对应于953 $ \ rm {fb}^{ - 1} $ 953 $ \ rm的集成光度的数据集执行的。 Dalitz图通过六个共振衰减通道的组合进行很好地描述$ k^{*}(1680)^ - π^{+} $和$ k_2^{*}(1980)^ - π^{+} $,以及$kπ$和$kη$ s-s-wave组件。衰减$ k^{*}(1680)^{ - } \ to k^{ - }η$和$ k_ {2}^{*}(1980)^{ - } \ to k^{ - }η$首次观察到。我们测量分支分数的比率,$ \ frac {\ mathcal {b}(d^{0} \ to k^{ - }π^{+}}}} {\ Mathcal {b}(d^{0} \ to to k^{ - }π^{+})} = 0.500 \ pm0.002 {\ rm(stat)} \ pm0.020 {\ rm(syst)} \ pm0.003 {\ rm(\ rm(\ mathcal {\ mathcal {b} _ {pdg} _ {pdg})} $。使用dalitz fit结果,比率$ \ frac {\ mathcal {b}(k^{*}(1680)\ tokη)} {\ Mathcal {b}(k^{*}(k^{*}(1680)\ tokπ)} $ $ 0.11 \ pm0.02 {\ rm(stat)}^{+0.06} _ { - 0.04} {\ rm(syst)} \ pm0.04 {\ rm(\ mathcal {\ Mathcal {b} _这远低于在假设$ k^{*}(1680)$是纯$ 1^{3} d_1 $状态下的理论期望($ \ of1 $)中。产品分支分数$ \ MATHCAL {B}(d^0 \ to [K_2^{*}(1980)^ - \ to K^{ - }η]π^{+})=(2.2^{+1.7} _ { - 1.7} _ { - 1.9})此外,$πη^{\ prime} $贡献了$ a_0(980)^{\ pm} $共振形状,使用三通道Flatté模型确认了10.1 $σ$统计显着性。我们还测量$ \ MATHCAL {B}(d^0 \ to \ bar {k}^{*}(892)^0η)=(1.41^{+0.13} _ { - 0.12})\%$。这与当前世界平均$(1.02 \ pm0.30)\%$相一致,更精确,偏离显着性超过$3σ$的理论预测(0.51-0.92)%。

We present the results of the first Dalitz plot analysis of the decay $D^{0}\to K^{-}π^{+}η$. The analysis is performed on a data set corresponding to an integrated luminosity of 953 $\rm{fb}^{-1}$ collected by the Belle detector at the asymmetric-energy $e^{+}e^{-}$ KEKB collider. The Dalitz plot is well described by a combination of the six resonant decay channels $\bar{K}^{*}(892)^0η$, $K^{-}a_0(980)^+$, $K^{-}a_2(1320)^+$, $\bar{K}^{*}(1410)^0η$, $K^{*}(1680)^-π^{+}$ and $K_2^{*}(1980)^-π^{+}$, together with $Kπ$ and $Kη$ S-wave components. The decays $K^{*}(1680)^{-}\to K^{-}η$ and $K_{2}^{*}(1980)^{-}\to K^{-}η$ are observed for the first time. We measure ratio of the branching fractions, $\frac{\mathcal{B}(D^{0}\to K^{-}π^{+}η)}{\mathcal{B}(D^{0}\to K^{-}π^{+})}=0.500\pm0.002{\rm(stat)}\pm0.020{\rm(syst)}\pm0.003{\rm (\mathcal{B}_{PDG})}$. Using the Dalitz fit result, the ratio $\frac{\mathcal{B}(K^{*}(1680)\to Kη)}{\mathcal{B}(K^{*}(1680)\to Kπ)}$ is measured to be $0.11\pm0.02{\rm(stat)}^{+0.06}_{-0.04}{\rm(syst)}\pm0.04{\rm(\mathcal{B}_{\text{PDG}})}$; this is much lower than the theoretical expectations ($\approx1$) made under the assumption that $K^{*}(1680)$ is a pure $1^{3}D_1$ state. The product branching fraction $\mathcal{B}(D^0\to [K_2^{*}(1980)^-\to K^{-}η]π^{+})=(2.2^{+1.7}_{-1.9})\times10^{-4}$ is determined. In addition, the $πη^{\prime}$ contribution to the $a_0(980)^{\pm}$ resonance shape is confirmed with 10.1$σ$ statistical significance using the three-channel Flatté model. We also measure $\mathcal{B}(D^0\to\bar{K}^{*}(892)^0η)=(1.41^{+0.13}_{-0.12})\%$. This is consistent with, and more precise than, the current world average $(1.02\pm0.30)\%$, deviates with a significance of more than $3σ$ from the theoretical predictions of (0.51-0.92)%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源