论文标题
LIPSCHITZ稳定性对于具有动态边界条件的各向异性抛物线方程中的逆源问题
Lipschitz stability for an inverse source problem in anisotropic parabolic equations with dynamic boundary conditions
论文作者
论文摘要
在本文中,我们研究了线性抛物线系统的逆问题,该系统具有可变的扩散系数,受动态边界条件的影响。我们证明了基于Carleman估计此类问题的最新估计,我们证明了全球Lipschitz稳定性,涉及从单个测量和内部观察结果同时恢复两个源术语。
In this paper, we study an inverse problem for linear parabolic system with variable diffusion coefficients subject to dynamic boundary conditions. We prove a global Lipschitz stability for the inverse problem involving a simultaneous recovery of two source terms from a single measurement and interior observations, based on a recent Carleman estimate for such problems.