论文标题

STEM-SEG:时空嵌入,例如视频中的分割

STEm-Seg: Spatio-temporal Embeddings for Instance Segmentation in Videos

论文作者

Athar, Ali, Mahadevan, Sabarinath, Ošep, Aljoša, Leal-Taixé, Laura, Leibe, Bastian

论文摘要

例如,视频中的分割通常涉及遵循跟踪划分范式并将视频剪辑建模为图像序列的多阶段管道。多个网络用于检测单个帧中的对象,然后随着时间的推移将这些检测与这些检测相关联。因此,这些方法通常是不端到端的训练,并且针对特定任务量身定制。在本文中,我们提出了一种不同的方法,该方法非常适合各种涉及视频中实例细分的任务。特别是,我们将视频剪辑建模为单个3D时空体积,并提出了一种新颖的方法,该方法在单个阶段中段落和时间段的实例进行了段和跟踪。我们的问题表述集中在时空嵌入的概念上,这些嵌入方式经过整个视频剪辑的群集像素的群集像素。为此,我们介绍了(i)新颖的混合功能,以增强时空嵌入的特征表示形式,以及(ii)一个可以推荐时间上下文的单阶段,无建议的网络。我们的网络经过训练的端到端,以学习时空嵌入以及聚集这些嵌入所需的参数,从而简化推理。我们的方法在多个数据集和任务中实现了最新的结果。代码和模型可在https://github.com/sabarim/stem-seg上找到。

Existing methods for instance segmentation in videos typically involve multi-stage pipelines that follow the tracking-by-detection paradigm and model a video clip as a sequence of images. Multiple networks are used to detect objects in individual frames, and then associate these detections over time. Hence, these methods are often non-end-to-end trainable and highly tailored to specific tasks. In this paper, we propose a different approach that is well-suited to a variety of tasks involving instance segmentation in videos. In particular, we model a video clip as a single 3D spatio-temporal volume, and propose a novel approach that segments and tracks instances across space and time in a single stage. Our problem formulation is centered around the idea of spatio-temporal embeddings which are trained to cluster pixels belonging to a specific object instance over an entire video clip. To this end, we introduce (i) novel mixing functions that enhance the feature representation of spatio-temporal embeddings, and (ii) a single-stage, proposal-free network that can reason about temporal context. Our network is trained end-to-end to learn spatio-temporal embeddings as well as parameters required to cluster these embeddings, thus simplifying inference. Our method achieves state-of-the-art results across multiple datasets and tasks. Code and models are available at https://github.com/sabarim/STEm-Seg.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源