论文标题

域自适应的几次学习

Domain-Adaptive Few-Shot Learning

论文作者

Zhao, An, Ding, Mingyu, Lu, Zhiwu, Xiang, Tao, Niu, Yulei, Guan, Jiechao, Wen, Ji-Rong, Luo, Ping

论文摘要

现有的少量学习(FSL)方法使隐含的假设是,少数目标类样本来自与源类样本相同的域。但是,实际上,这个假设通常是无效的 - 目标类可能来自不同的领域。这对域适应(DA)提出了额外的挑战,几乎没有培训样本。在本文中,解决了领域自适应几次学习(DA-FSL)的问题,这需要在统一的框架中解决FSL和DA。为此,我们提出了一个新型的域 - 逆转典型网络(DAPN)模型。它旨在应对DA-FSL中的特定挑战:DA目标意味着源和目标数据分布需要对齐,通常是通过共享的域自适应功能嵌入空间来对齐;但是FSL的目标表明,每个类别分布的目标域必须与任何源域类别不同,这意味着将跨域的分布对齐可能会损害FSL性能。如何实现全球域分布对齐,同时维持源/目标人均歧视性成为关键。我们的解决方案是在嵌入DAPN中学习的域自适应特征之前明确增强源/目标分离,以减轻域对齐对FSL的负面影响。广泛的实验表明,我们的DAPN优于最先进的FSL和DA模型以及它们的幼稚组合。该代码可在https://github.com/dingmyu/dapn上找到。

Existing few-shot learning (FSL) methods make the implicit assumption that the few target class samples are from the same domain as the source class samples. However, in practice this assumption is often invalid -- the target classes could come from a different domain. This poses an additional challenge of domain adaptation (DA) with few training samples. In this paper, the problem of domain-adaptive few-shot learning (DA-FSL) is tackled, which requires solving FSL and DA in a unified framework. To this end, we propose a novel domain-adversarial prototypical network (DAPN) model. It is designed to address a specific challenge in DA-FSL: the DA objective means that the source and target data distributions need to be aligned, typically through a shared domain-adaptive feature embedding space; but the FSL objective dictates that the target domain per class distribution must be different from that of any source domain class, meaning aligning the distributions across domains may harm the FSL performance. How to achieve global domain distribution alignment whilst maintaining source/target per-class discriminativeness thus becomes the key. Our solution is to explicitly enhance the source/target per-class separation before domain-adaptive feature embedding learning in the DAPN, in order to alleviate the negative effect of domain alignment on FSL. Extensive experiments show that our DAPN outperforms the state-of-the-art FSL and DA models, as well as their naïve combinations. The code is available at https://github.com/dingmyu/DAPN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源