论文标题
毫利希兹重力波乐队中的假巨大黑洞
Fake massive black holes in the milli-Hertz gravitational-wave band
论文作者
论文摘要
在重力波(GW)天文学中,诸如质量参数的精确测量依赖于精确的波形模板。当前,假设源(例如二进制黑洞(BBH))居住在真空中,则开发了模板。但是,天体物理模型预测,BBH可以在气态环境中形成,例如活性银河核的常见信封,恒星核心和增生磁盘。在这里,我们重新审视气体对恒星质量BBHS的GW波形的影响,重点是GW频率在Milli-Hertz附近时的早期灵感阶段。我们表明,对于这些BBH,气体摩擦可以主导动力学演化,从而重复进行CHIRP信号。相关的流体动力学时间尺度,$τ_{\ rm Gas} $,在上面的天体物理场景中,可能比GW辐射时间尺度($τ_ {\ rm GW} $短得多。结果,如果数据分析中忽略了气体效应,则可观察到的呼叫质量高于$(1+τ_ {\ rm gw}/τ_ {\ rm gas})^{3/5} $的因子高于真实的质量。这样的错误还导致源距离高估了$(1+τ_ {\ rm gw}/τ_ {\ rm gas Gas})$。通过在Milli-Hertz频段进行匹配的过滤分析,我们证明了以气体为主的信号与在真空环境中驻留的更大质量BBH的chirp信号几乎没有区别。 Milli-Hertz乐队中的这种假巨大对象,即将来临,即使未适当地解释我们对BBHS的形成,进化和检测的理解。
In gravitational wave (GW) astronomy accurate measurement of the source parameters, such as mass, relies on accurate waveform templates. Currently, the templates are developed assuming that the source, such as a binary black hole (BBH), is residing in a vacuum. However, astrophysical models predict that BBHs could form in gaseous environments, such as common envelops, stellar cores, and accretion disks of active galactic nuclei. Here we revisit the impact of gas on the GW waveforms of stellar-mass BBHs with a focus on the early inspiral phase when the GW frequency is around milli-Hertz. We show that for these BBHs, gas friction could dominate the dynamical evolution and hence duplicate chirp signals. The relevant hydrodynamical timescale, $τ_{\rm gas}$, could be much shorter than the GW radiation timescale, $τ_{\rm gw}$, in the above astrophysical scenarios. As a result, the observable chirp mass is higher than the real one by a factor of $(1+τ_{\rm gw}/τ_{\rm gas})^{3/5}$ if the gas effect is ignored in the data analysis. Such an error also results in an overestimation of the source distance by a factor of $(1+τ_{\rm gw}/τ_{\rm gas})$. By performing matched-filtering analysis in the milli-Hertz band, we prove that the gas-dominated signals are practically indistinguishable from the chirp signals of those more massive BBHs residing in a vacuum environment. Such fake massive objects in the milli-Hertz band, if not appropriately accounted for in the future, may alter our understanding of the formation, evolution, and detection of BBHs.