论文标题
通过稀疏性二次分配的高效且健壮的形状对应
Efficient and Robust Shape Correspondence via Sparsity-Enforced Quadratic Assignment
论文作者
论文摘要
在这项工作中,我们引入了一种新型的本地成对描述符,然后开发出一种简单,有效的迭代方法,通过稀疏控制求解所得的二次分配,以在两个近似等距表面之间形成对应关系。我们的成对描述符基于Laplace-Beltrami差异操作员的有限元近似的刚度和质量矩阵,该操作员在空间中是局部的,稀疏表示,并且在包含全局信息的同时非常易于计算。它使我们能够牢固地处理开放表面,部分匹配和拓扑扰动。为了有效地解决所得的二次分配问题,我们迭代算法的两个关键思想是:1)选择对应(近似)对应的对应点作为锚点,2)仅在选定的锚定点附近解决正规化的二次分配问题。这两种成分可以快速改善和增加锚点的数量,同时大大降低每个二次分配迭代的计算成本。有了足够的高质量锚点,人们可能会在这些锚点方面使用各种刻度的全局特征来进一步改善致密形状的对应关系。我们使用各种实验来显示我们方法在大数据集,补丁和点云(无全局网格)上的效率,质量和多功能性。
In this work, we introduce a novel local pairwise descriptor and then develop a simple, effective iterative method to solve the resulting quadratic assignment through sparsity control for shape correspondence between two approximate isometric surfaces. Our pairwise descriptor is based on the stiffness and mass matrix of finite element approximation of the Laplace-Beltrami differential operator, which is local in space, sparse to represent, and extremely easy to compute while containing global information. It allows us to deal with open surfaces, partial matching, and topological perturbations robustly. To solve the resulting quadratic assignment problem efficiently, the two key ideas of our iterative algorithm are: 1) select pairs with good (approximate) correspondence as anchor points, 2) solve a regularized quadratic assignment problem only in the neighborhood of selected anchor points through sparsity control. These two ingredients can improve and increase the number of anchor points quickly while reducing the computation cost in each quadratic assignment iteration significantly. With enough high-quality anchor points, one may use various pointwise global features with reference to these anchor points to further improve the dense shape correspondence. We use various experiments to show the efficiency, quality, and versatility of our method on large data sets, patches, and point clouds (without global meshes).