论文标题
系统模型降低捕获生化子网中外部噪声的动态
Systematic model reduction captures the dynamics of extrinsic noise in biochemical subnetworks
论文作者
论文摘要
我们考虑描述较大生化反应网络的子网动力学的一般问题,例如涉及复杂形成和解离反应的蛋白质相互作用网络。我们建议使用减少模型策略来理解网络其余部分引起的随机性的“外部”来源。我们的方法基于通过投影方法和路径积分得出的子网动力学方程。结果提供了外部噪声的不同成分的原理推导,这些衍生物在细胞生化反应中被实验观察到,在子网中生化事件的随机性中的固有噪声之上和之上。我们探索了几个中间近似值,以系统地评估不同外部噪声组件的相对重要性,包括初始瞬态,长时间高原,时间相关,乘法噪声项和非线性噪声传播。最佳近似值在简单蛋白网络和表皮生长因子受体信号网络上的定量测试方面具有良好的准确性。
We consider the general problem of describing the dynamics of subnetworks of larger biochemical reaction networks, e.g. protein interaction networks involving complex formation and dissociation reactions. We propose the use of model reduction strategies to understand the 'extrinsic' sources of stochasticity arising from the rest of the network. Our approaches are based on subnetwork dynamical equations derived by projection methods and by path integrals. The results provide a principled derivation of the different components of the extrinsic noise that is observed experimentally in cellular biochemical reactions, over and above the intrinsic noise from the stochasticity of biochemical events in the subnetwork. We explore several intermediate approximations to assess systematically the relative importance of different extrinsic noise components, including initial transients, long-time plateaus, temporal correlations, multiplicative noise terms and nonlinear noise propagation. The best approximations achieve excellent accuracy in quantitative tests on a simple protein network and on the epidermal growth factor receptor signalling network.