论文标题

紧凑的光谱描述符用于形状变形

A Compact Spectral Descriptor for Shape Deformations

论文作者

Sible, Skylar, Iza-Teran, Rodrigo, Garcke, Jochen, Aulig, Nikola, Wollstadt, Patricia

论文摘要

工程领域中的现代产品设计越来越受到计算分析的驱动,包括基于有限元素的仿真,计算优化和现代数据分析技术,例如机器学习。要应用这些方法,必须找到针对正在开发的组件以及相关设计标准的合适数据表示。尽管组件的几何形状通常由多边形表面网格表示,但通常不清楚如何参数化关键设计属性以实现有效的计算分析。在目前的工作中,我们提出了一种新的方法,以在压力下获得组件塑性变形行为的参数化,这是许多应用程序域中的重要设计标准,例如,在优化汽车上环境中的崩溃行为时。现有的参数化将计算分析限制为相对简单的变形,通常需要专家的大量输入,从而使设计过程的时间很大且昂贵。因此,我们提出了一种基于光谱网格处理的变形行为的紧凑描述符的方法,并实现了同样复杂变形的低维表示。我们证明描述符能够在最近的邻居搜索中识别过过滤任务中的相似模拟来表示相关的变形行为,以表示相关的变形行为。提出的描述符为几何变形行为的参数化提供了一种新颖的方法,并可以使用最先进的数据分析技术,例如机器学习来工程与塑性变形行为有关的任务。

Modern product design in the engineering domain is increasingly driven by computational analysis including finite-element based simulation, computational optimization, and modern data analysis techniques such as machine learning. To apply these methods, suitable data representations for components under development as well as for related design criteria have to be found. While a component's geometry is typically represented by a polygon surface mesh, it is often not clear how to parametrize critical design properties in order to enable efficient computational analysis. In the present work, we propose a novel methodology to obtain a parameterization of a component's plastic deformation behavior under stress, which is an important design criterion in many application domains, for example, when optimizing the crash behavior in the automotive context. Existing parameterizations limit computational analysis to relatively simple deformations and typically require extensive input by an expert, making the design process time intensive and costly. Hence, we propose a way to derive a compact descriptor of deformation behavior that is based on spectral mesh processing and enables a low-dimensional representation of also complex deformations.We demonstrate the descriptor's ability to represent relevant deformation behavior by applying it in a nearest-neighbor search to identify similar simulation results in a filtering task. The proposed descriptor provides a novel approach to the parametrization of geometric deformation behavior and enables the use of state-of-the-art data analysis techniques such as machine learning to engineering tasks concerned with plastic deformation behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源