论文标题
通过逆渲染超准确的摄像机校准
Superaccurate Camera Calibration via Inverse Rendering
论文作者
论文摘要
摄像机校准的最普遍的例程是基于在专用校准工件上检测到定义明确的特征点。这些可能是通常在平面结构上印刷的棋盘鞍点,圆形,戒指或三角形。首先检测到该特征点,然后在非线性优化中用于估计内部摄像机参数。我们使用逆渲染原理提出了一种新的相机校准方法。我们不仅依赖于检测到的特征点,而是使用内部参数的估计值和校准对象的姿势,以隐式地呈现出非遗物的光学特征。这使我们能够在没有插值伪像的情况下计算图像域的像素差异。然后,我们可以通过最大程度地减少最小二乘差异来提高内部参数的估计。通过这种方式,我们的模型在图像空间中优化了一个有意义的指标,假设相机传感器正常分布的噪声特征。我们使用合成和真实的摄像机图像证明,与当前最新的校准例程相比,我们的方法提高了我们的方法提高了估计的摄像机参数的准确性。我们的方法还在存在噪声和校准图像数量的情况下,在存在噪声的情况下更加牢固地估算这些参数。
The most prevalent routine for camera calibration is based on the detection of well-defined feature points on a purpose-made calibration artifact. These could be checkerboard saddle points, circles, rings or triangles, often printed on a planar structure. The feature points are first detected and then used in a nonlinear optimization to estimate the internal camera parameters.We propose a new method for camera calibration using the principle of inverse rendering. Instead of relying solely on detected feature points, we use an estimate of the internal parameters and the pose of the calibration object to implicitly render a non-photorealistic equivalent of the optical features. This enables us to compute pixel-wise differences in the image domain without interpolation artifacts. We can then improve our estimate of the internal parameters by minimizing pixel-wise least-squares differences. In this way, our model optimizes a meaningful metric in the image space assuming normally distributed noise characteristic for camera sensors.We demonstrate using synthetic and real camera images that our method improves the accuracy of estimated camera parameters as compared with current state-of-the-art calibration routines. Our method also estimates these parameters more robustly in the presence of noise and in situations where the number of calibration images is limited.