论文标题
奇怪的喷气标记
Strange Jet Tagging
论文作者
论文摘要
通过高能碰撞物物理学中剩下的少数几乎没有探索的标准模型对象分类问题,可以用力奇怪的夸克引发的强烈相互作用的粒子标记喷射。在本文中,我们以区分奇怪的夸克喷气机和Quark Jets的形式研究了此分类问题的最纯粹版本。我们的策略依赖于以下事实:奇怪的Quark射流平均含有比下Quark Jet的中性Kaon能量与中性pion能量更高的比例。长寿命的中性Kaons沉积能量主要在高能检测器的辐射热量表中,而中性乳头迅速腐烂到主要沉积能量的光子,主要沉积在电磁热量计中。此外,在飞往带电的亲Pion对的飞行中衰减的短寿命中性ka可以将其识别为内部跟踪系统中的次要顶点。使用这些手柄,我们研究了不同的方法,以区分奇怪的夸克与夸克喷气机,包括基于单一的剪切方法,具有少量简单变量的增强决策树(BDT)以及具有JET图像的深度学习卷积神经网络(CNN)体系结构。我们表明,与BDT或单个变量相比,CNN可以从CNN获得适度的收益。从只有奇怪的夸克和夸克喷气机的喷气样品开始,CNN算法可以将奇怪与降低比率提高约2倍,即奇怪的标记效率低于0.2,而对于接近0.02的奇怪标记效率,奇怪的标记效率为2.5。
Tagging jets of strongly interacting particles initiated by energetic strange quarks is one of the few largely unexplored Standard Model object classification problems remaining in high energy collider physics. In this paper we investigate the purest version of this classification problem in the form of distinguishing strange-quark jets from down-quark jets. Our strategy relies on the fact that a strange-quark jet contains on average a higher ratio of neutral kaon energy to neutral pion energy than does a down-quark jet. Long-lived neutral kaons deposit energy mainly in the hadronic calorimeter of a high energy detector, while neutral pions decay promptly to photons that deposit energy mainly in the electromagnetic calorimeter. In addition, short-lived neutral kaons that decay in flight to charged pion pairs can be identified as a secondary vertex in the inner tracking system. Using these handles we study different approaches to distinguishing strange-quark from down-quark jets, including single variable cut-based methods, a boosted decision tree (BDT) with a small number of simple variables, and a deep learning convolutional neural network (CNN) architecture with jet images. We show that modest gains are possible from the CNN compared with the BDT or a single variable. Starting from jet samples with only strange-quark and down-quark jets, the CNN algorithm can improve the strange to down ratio by a factor of roughly 2 for strange tagging efficiencies below 0.2, and by a factor of 2.5 for strange tagging efficiencies near 0.02.