论文标题
无需电荷泵的高维概括
Higher-dimensional generalizations of the Thouless charge pump
论文作者
论文摘要
我们定义和研究无需泵的多体损失系统$ d $的类似物。我们展示了如何将拓扑不变性附加到此类系统的$ d $维度家族中,前提是所有这些都有现场$ u(1)$对称性。对于一大批家庭,我们认为这种拓扑不变是一个整数。对于在两个维度上的自由费米子的间隙系统,可以根据bloch-berry连接的曲率表示不变性。我们还为1D中的无电荷泵获得了一个新的公式,该公式仅涉及静态线性响应,并且类似于STREDA公式用于霍尔电导率。
We define and study analogs of the Thouless charge pump for many-body gapped systems in dimension $D$. We show how to attach a topological invariant to a $D$-dimensional family of such systems, provided all of them have an on-site $U(1)$ symmetry. For a large class of families we argue that this topological invariant is an integer. In the case of gapped systems of free fermions in two dimensions, the invariant can be expressed in terms of the curvature of the Bloch-Berry connection. We also obtain a new formula for the Thouless charge pump in 1d which involves only static linear response and is analogous to the Streda formula for Hall conductivity.