论文标题
恢复单调性的黑盒方法
Black-box Methods for Restoring Monotonicity
论文作者
论文摘要
在许多实际应用中,启发式或近似算法用于有效地解决手头的任务。但是,它们的解决方案经常不满足最佳解决方案的自然单调性能。在这项工作中,我们开发了能够在感兴趣的参数中恢复单调性的算法。具体而言,给定的Oracle访问(可能是非单调的)多维实价函数$ f $,我们提供了一种算法,该算法可恢复单调性,同时将函数的预期值降低最多$ \ varepsilon $。所需的查询数量最多为$ 1/\ varepsilon $,而参数数量为指数。我们还给出了一个下限,表明这种指数依赖性是必要的。最后,我们获得了改进的查询复杂性范围,以恢复$ k $ - 玛格尼尔单调性的较弱属性。在此属性下,函数$ f $的每个$ k $维投影都是单调的。我们仅使用$ k $呈指数级的查询复杂性。
In many practical applications, heuristic or approximation algorithms are used to efficiently solve the task at hand. However their solutions frequently do not satisfy natural monotonicity properties of optimal solutions. In this work we develop algorithms that are able to restore monotonicity in the parameters of interest. Specifically, given oracle access to a (possibly non-monotone) multi-dimensional real-valued function $f$, we provide an algorithm that restores monotonicity while degrading the expected value of the function by at most $\varepsilon$. The number of queries required is at most logarithmic in $1/\varepsilon$ and exponential in the number of parameters. We also give a lower bound showing that this exponential dependence is necessary. Finally, we obtain improved query complexity bounds for restoring the weaker property of $k$-marginal monotonicity. Under this property, every $k$-dimensional projection of the function $f$ is required to be monotone. The query complexity we obtain only scales exponentially with $k$.