论文标题
使用多策略进化框架优化大波浪农场
Optimisation of Large Wave Farms using a Multi-strategy Evolutionary Framework
论文作者
论文摘要
波能是一种快速发展且有希望的可再生能源资源。这项研究的主要目的是最大化由完全满足的三螺旋波转换器(WEC)组成的大波浪农场的总体利用功率。大型农场的能量最大化是一个具有挑战性的搜索问题,因为对大波浪农场中的WEC和搜索空间的高维度的WEC之间的流体动力相互作用进行了昂贵的计算。为了解决这个问题,我们提出了一个新的混合多构策性进化框架,该框架结合了智能初始化,基于二进制的基于二进制的基于二进制的进化算法,离散的本地搜索和连续的全局优化。为了评估提出的混合方法的性能,我们将其与各种最新优化方法进行了比较,包括六种连续的进化算法,四种离散搜索技术和三种混合优化方法。结果表明,所提出的方法在收敛速度和农场产出方面的性能要好得多。
Wave energy is a fast-developing and promising renewable energy resource. The primary goal of this research is to maximise the total harnessed power of a large wave farm consisting of fully-submerged three-tether wave energy converters (WECs). Energy maximisation for large farms is a challenging search problem due to the costly calculations of the hydrodynamic interactions between WECs in a large wave farm and the high dimensionality of the search space. To address this problem, we propose a new hybrid multi-strategy evolutionary framework combining smart initialisation, binary population-based evolutionary algorithm, discrete local search and continuous global optimisation. For assessing the performance of the proposed hybrid method, we compare it with a wide variety of state-of-the-art optimisation approaches, including six continuous evolutionary algorithms, four discrete search techniques and three hybrid optimisation methods. The results show that the proposed method performs considerably better in terms of convergence speed and farm output.